Biofixation of CO₂ from Synthetic Combustion Gas Using Cultivated Microalgae in Three-Stage Serial Tubular Photobioreactors

Michele G. Morais, Elisângela M. Radmann, and Jorge A. V. Costa*

Laboratory of Biochemistry Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), P. O. Box 474, Rio Grande-RS, 96201-900, Brazil. Fax: +55-53-32338745. E-mail: jorge@pq.cnpq.br

* Author for correspondence and reprint requests

Z. Naturforsch. 66 c, 313-318 (2011); received September 13, 2010/January 14, 2011

Coal is the most abundant of the fossil fuels, with reserves estimated at 10^2 billions of tons. The feasibility of using coal as a fuel depends upon reducing emissions of gas when it is burnt, such as carbon dioxide (CO₂), sulfur oxides (SO_x), and nitrogen oxides (NO_x). The removal of CO₂ with microalgae may be one of the most efficient ways of reducing this gas, without the need for radical changes in the world's energy supply and production methods. *Spirulina* sp. LEB-18 and *Scenedesmus obliquus* LEB-22 were cultivated in serial tubular photobioreactors, with the aim of measuring the potential of CO₂ biofixation and the resistance of the microalgae to SO₂ and NO. *Spirulina* sp. and *S. obliquus* had CO₂ biofixation scores of 0.27 and 0.22 g L⁻¹ d⁻¹, respectively. Both microalgae were resistant to SO₂ and NO, and grew during the 15 d they were cultivated, which proves that using microalgae is an efficient method of biofixation of CO₂ emitted when fossil fuels are burnt.

Key words: Carbon Dioxide, Microalgae, Photobioreactor