Synthetic 3-Arylideneflavanones as Inhibitors of the Initial Stages of Biofilm Formation by *Staphylococcus aureus* and *Enterococcus faecalis*

Aleksandra Budzyńska, Marek Róślaski, Wiesława Karolczak, Marzena Wiźkowska-Szakiela, Beata Sadowska, and Barbara Róślaska,*

* Department of Immunology and Infectious Biology, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland. E-mail: rozab@biol.uni.lodz.pl

b Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Łódź, Muszyński 1, 90-151 Łódź, Poland

c Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Łódź, Muszyński 1, 90-151 Łódź, Poland

* Author for correspondence and reprint requests

The antimicrobial activity of twenty two synthetic flavonoids is reported. Among them three 3-arylideneflavanones, 2b, 2c, and 2i, were shown to be highly active against *Staphylococcus aureus*, *S. epidermidis*, and *Enterococcus faecalis* reference strains, with MIC (minimal inhibitory concentration) values ranging from 4.68 µg/ml (14.3 µM) to 37.5 µg/ml (119.7 µM). The synergy of oxacillin and vancomycin with 2c, evaluated as fractional inhibitory concentration index (FICI) was shown (against planktonic culture of *S. aureus* A3 and *E. faecium* 138/09 clinical strains). The presence of 2c in the culture medium diminished the initial adhesion of bacteria to an abiotic surface. Such an effect resulted in a decrease in biofilm formation during prolonged culture. Unfortunately, 2c failed to eradicate the *S. aureus* mature biofilm which was already preformed, however, decreased the number of live biofilm cells. The biofilm of *E. faecalis* was more susceptible to the action of 3-arylideneflavanone 2c than the *S. aureus* biofilm. The finding that 3-arylideneflavanones are lipophilic, cause bacterial aggregation, and influence the integrity of membranes making them permeable to SYTO 9/propidium iodide dyes may implicate the cytoplasmic membrane as a target site for these compounds activity.

Key words: 3-Arylideneflavanones, Biofilm, *Staphylococcus*, *Enterococcus*