Synthetic 3-Arylideneflavanones as Inhibitors of the Initial Stages of Biofilm Formation by *Staphylococcus aureus* and *Enterococcus faecalis*

Aleksandra Budzy ska^a, Marek Ró alski^b, Wiesława Karolczak^c, Marzena Wi ckowska-Szakiel^a, Beata Sadowska^a, and Barbara Ró alska^{a,*}

- Department of Immunology and Infectious Biology, University of Łód , Banacha 12/16, 90-237 Łód , Poland. E-mail: rozab@biol.uni.lodz.pl
- b Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Łód, Muszy skiego 1, 90-151 Łód, Poland
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Łód ,
 Muszy skiego 1, 90-151 Łód , Poland
- * Author for correspondence and reprint requests

Z. Naturforsch. **66 c**, 104–114 (2011); received August 6/December 3, 2010

The antimicrobial activity of twenty two synthetic flavonoids is reported. Among them three 3-arylideneflavanones, **2b**, **2c**, and **2i**, were shown to be highly active against *Staphylococcus aureus*, *S. epidermidis*, and *Enterococcus faecalis* reference strains, with MIC (minimal inhibitory concentration) values ranging from 4.68 μ g/ml (14.3 μ M) to 37.5 μ g/ml (119.7 μ M). The synergy of oxacillin and vancomycin with **2c**, evaluated as fractional inhibitory concentration index (FICI) was shown (against planktonic culture of *S. aureus* A3 and *E. faecium* 138/09 clinical strains). The presence of **2c** in the culture medium diminished the initial adhesion of bacteria to an abiotic surface. Such an effect resulted in a decrease in biofilm formation during prolonged culture. Unfortunately, **2c** failed to eradicate the *S. aureus* mature biofilm which was already preformed, however, decreased the number of live biofilm cells. The biofilm of *E. faecalis* was more susceptible to the action of 3-arylideneflavanone **2c** than the *S. aureus* biofilm. The finding that 3-arylideneflavanones are lipophilic, cause bacterial aggregation, and influence the integrity of membranes making them permeable to SYTO 9/propidium iodide dyes may implicate the cytoplasmic membrane as a target site for these compounds activity.

Key words: 3-Arylideneflavanones, Biofilm, Staphylococcus, Enterococcus