A Bioactive Prodelphinidin from *Mangifera indica* Leaf Extract

Khaled Tawaha\(^a\), Rasha Sadib\(^b\), Fadi Qa’dan\(^b\),* Khalid Z. Matalka\(^b\), and Adolf Nahrstedt\(^c\)

\(^a\) Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman 11942, Jordan
\(^b\) Faculty of Pharmacy, Petra University, P. O. Box 961343, Amman 11196, Jordan.
E-mail: fqadan@gmail.com and fqadan@uop.edu.jo
\(^c\) Institut fuer Pharmazeutische Biologie und Phytochemie, Universitaet Muenster, Hittorfstrasse 56, D-48149 Muenster, Germany

* Author for correspondence and reprint requests

Z. Naturforsch. 65c, 322–326 (2010); received January 18/March 4, 2010

A new trimeric proanthocyanidin, epigallocatechin-3-O-gallat-(4\(\beta\)\(\gamma\) 8)-epigallocatechin-(4\(\beta\)\(\gamma\) 8)-catechin (\(\text{1}\)), was isolated together with three known flavan-3-ols, catechin (\(\text{2}\)), epicatechin (\(\text{3}\)), and epigallocatechin (\(\text{4}\)), and three dimeric proanthocyanidins, 5–7, from the air-dried leaves of *Mangifera indica*. Their chemical structures were determined on the basis of 1D- and 2D-NMR spectra (HSQC, HMBC) of their peracetylated derivatives, MALDI-TOF-mass spectra, and by acid-catalyzed degradation with phloroglucinol. The isolated compounds \(\text{1–7}\) were *in vitro* tested for their inhibitory activities against COX-1 and COX-2. Compound \(\text{1}\) was found to have a potent inhibitory effect on COX-2, while compounds \(\text{1}\) and \(\text{5–7}\) exhibited moderate inhibition against COX-1.

Key words: *Mangifera indica*, Proanthocyanidins, COX Inhibitor