The caffeine biosynthetic pathway is composed of three methylation steps, and \(\text{N} \)-methyltransferase catalyzing each step has high substrate specificity. Since the amino acid sequences among coffee 7-methylxanthosine synthase (\(\text{CmXRS1} \)), theobromine synthase, and caffeine synthase are highly homologous to each other, these substrate specificities seem to be determined in a very restricted region. The analysis of site-directed mutants for \(\text{CmXRS1} \) that naturally acts at the initial step, \textit{i.e.} 7-\(\text{N} \) methylation of xanthosine, revealed that the activity of 3-\(\text{N} \) methylation needs a histidine residue at corresponding position 161 in the \(\text{CmXRS1} \) sequence. We succeeded in producing the mutant enzyme which can catalyze the first and second methylation steps in caffeine biosynthesis.

Key words: Coffee, Caffeine, \(\text{N} \)-Methyltransferase