Mutagenicity of Bisbenzimidazole Derivatives

Filiz Susuz Alanyalı, Merve Arıcı, Öge Artagan, İlhan İşkaş, and Yusuf Özkay

Department of Biology, Faculty of Science, Anadolu University, 26470 Eskişehir, Turkey. Fax: +90-222-3204910. E-mail: fsusuz@anadolu.edu.tr

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey

* Author for correspondence and reprint requests

Z. Naturforsch. 65c, 10–14 (2010); received July 7/August 28, 2009

The mutagenicities of 2,2’-(di-3-hydroxyphenyl)-1H,1H’-[5,5’]-bisbenzimidazole, 2,2’-(di-4-hydroxyphenyl)-1H,1H’-[5,5’]-bisbenzimidazole, 2,2’-(di-3-methoxyphenyl)-1H,1H’-[5,5’]-bisbenzimidazole, 2,2’-bis-(4-nitrophenyl)-1H,1H’-[5,5’]-bisbenzimidazole, 2,2’-bis-(3-nitrophenyl)-1H,1H’-[5,5’]-bisbenzimidazole, 2,2’-bis-(4-methylphenyl)-1H,1H’-[5,5’]-bisbenzimidazole, 2,2’-(di-4-methoxyphenyl)-1H,1H’-[5,5’]-bisbenzimidazole, and 2,2’-bis-(3-methylphenyl)-1H,1H’-[5,5’]-bisbenzimidazole were studied in vitro using two strains of Salmonella typhimurium with frameshift mutation (TA98) and base-pair substitution mutation (TA100) as the plate incorporation assay in the absence of metabolic activation. These compounds are currently used to treat cancer. 4-Nitrophenyl and 3-nitrophenyl compounds were found to be mutagenic on both strains of Salmonella. A clear mutagenic response was seen in nitro-bound derivatives. The mutagenic response in Salmonella test strains (TA98, TA100) and structures of molecules suggest that nitro-bound molecules could be mutagenic.

Key words: Mutagenicity, Salmonella, Bisbenzimidazoles