Cytotoxic α-Pyrone derivatives from Xylaria hypoxylon

Anja Schüfflera, Olov Sternerb,*, and Heidrun Ankea,*

a Institute of Biotechnology and Drug Research, Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany. Fax: +496313167215. E-mail: anke@ibwf.de

b Division of Organic Chemistry, University of Lund, P.O. Box 124, S-22100 Lund, Sweden. Fax: +46462228209. E-mail: Olov.Sterner@organic.lu.se

* Authors for correspondence and reprint requests

Z. Naturforsch. 62c, 169–172 (2007); received December 4, 2006

Two new α-pyrone derivatives, xylarone (1) and 8,9-dehydroxylarone (2) possessing cytotoxic activities, were isolated from the culture fluid of submerged cultures of the ascomycete Xylaria hypoxylon, strain A27-94. Their structures were elucidated by spectroscopic methods.

Key words: Xylarone, 8,9-Dehydroxylarone, α-Pyrone, Xylaria hypoxylon

Introduction

Fungi of the genus Xylaria are known to be a rich source of secondary metabolites, among them are succinic acid derivatives (Anderson and Edwards, 1985), cytochalasins (Dagne et al., 1994) and the more common melleins (Whalley and Edwards, 1995). Many of the metabolites possess biological activity, and remarkable antifungal activities have been reported for xylarin (Schneider et al., 1995) and xylaramide (Schneider et al., 1996). Xylaria species occur worldwide from arctic to tropic regions where they are especially abundant and occupy ecological diverse habitats. They are often isolated as endophytes and some species are phytopathogenic, for example Xylaria arbuscula (Whalley, 1996). During a screening of fungi for the production of biologically active metabolites, extracts of the culture fluid of Xylaria hypoxylon, strain A27-94, were found to possess cytotoxic activities. A preliminary investigation indicated that compounds other than cytochalasins were responsible for this activity. The cytotoxic principles were therefore isolated by bioassay-guided fractionation and two cytotoxic compounds, 1 and 2, were obtained. Their structures were determined by spectroscopic methods. This paper reports the fermentation of strain A27-94, the isolation and structure determination of 1 and 2, as well as the biological activities of the new metabolites.

Materials and Methods

General experimental procedures

1H NMR (500 MHz) and 13C NMR (125 MHz) spectra were recorded at room temperature with a Bruker DRX500 spectrometer with an inverse multinuclear 5 mm probe equipped with a shielded gradient coil. The spectra were recorded in CDCl$_3$, and the solvent signals (7.26 and 77.0 ppm, respectively) were used as reference. The chemical shifts (δ) are given in ppm, and the coupling constants (J) in Hz. COSY, HMQC and HMBC experiments were recorded with gradient enhancements using sine-shaped gradient pulses. For the 2D heteronuclear correlation spectroscopy the refocusing delays were optimized for 1J$_{CH}$ = 145 Hz and 2J$_{CH}$ = 10 Hz. The raw data were transformed and the spectra were evaluated with the standard Bruker XWIN-NMR software (rev. 010101). Mass spectra (HRESI) were recorded with a Micromass Q-TOF MICRO instrument. FT-IR spectra were recorded with a Bruker IFS-48 spectrometer and UV spectra with a Perkin-Elmer Lambda 16 spectrometer.

Producing organism

Fruiting bodies of Xylaria species, A27-94, growing on wood in Canada (vicinity of Vancouver) were collected in 1994. Mycelial cultures were obtained from interior tissues of surface-sterilized fruiting bodies. Herbarium specimen and mycelial cultures are deposited in the culture collection of the institute of biotechnology and drug research (IBWF), Kaiserslautern, Germany. Morphology of the fruiting bodies resembled Xylaria hypoxylon, but unfortunately no perithecia were found (Breitenbach and Kränzlin, 1984). However, its ITS sequence showed a homology of 99.6% with Xylaria hypoxylon (DQ491487).
Fermentation of Xylaria hypoxylon and isolation of the compounds

For submerged cultivation strain A27-94 was grown at 22–24 °C in YMG medium (yeast extract 4 g/l, malt extract 10 g/l, glucose 10 g/l, the pH value was adjusted to 5.5 before autoclaving) in a 20 l-fermenter (Biolafitte). A well grown shake culture (250 ml) in the same medium in a 500 ml-Erlenmeyer flask was used as inoculum. The fermentation was carried out with agitation (130 rpm) and aeration (3 l/min) for 8 d. Mycelia containing no active metabolites were discarded after filtration. The compounds were isolated from the culture broth (16 l) by adsorption onto HP 21 resin (Mitsubishi) and elution with MeOH (1.5 l). The crude extract (1.1 g) obtained by concentration was applied onto silica gel (Merck 60, 0.063 ~ 0.2 mm, 60 g). Elution with cyclohexane/EtOAc (6:1) yielded 61.4 mg. Final purification was achieved by preparative HPLC (Merck, Lichrosorb RP 18, 7 μm, 250 ¥ 25 mm). Elution with a H2O/acetonitrile gradient (10 min equilibration with 50% MeCN, 50% to 75% MeCN in 30 min, flow: 20 ml/min) resulted in 5 mg of compound 1 (RT 24.2 min) and 4.1 mg of compound 2 (RT 21.1 min).

Physicochemical properties

Xylarone (1): Yellowish oil. – UV (MeOH): \(\lambda_{\text{max}} (\log \varepsilon) = 229 (4.42), 331 (3.99) \text{nm} \). – IR (KBr): \(\nu = 3427, 2960, 1688, 1615, 1558, 1381, 1358, 1249, 1170, 1011, 749 \text{ cm}^{-1} \). – \(^1\text{H}\) and \(^{13}\text{C}\) NMR: see Table I. – HRMS (ESI, M+H\(^+\)): \(m/z = 223.1349 \) (calcd. for C\(_{13}\)H\(_{19}\)O\(_3\) 223.1334).

8,9-Dehydroxylarone (2): Yellowish oil. – UV (MeOH): \(\lambda_{\text{max}} (\log \varepsilon) = 253 (4.24), 356 (4.00) \text{ nm} \). – IR (KBr): \(\nu = 3441, 2954, 1683, 1629, 1553, 1383, 1248, 1156, 1012, 957, 807, 747 \text{ cm}^{-1} \). – \(^1\text{H}\) and \(^{13}\text{C}\) NMR: see Table I. – HRMS (ESI, M+H\(^+\)): \(m/z = 221.1188 \) (calcd. for C\(_{13}\)H\(_{17}\)O\(_3\) 221.1178).

Biological assays

Cytotoxicity was assayed as described previously with slight modifications (Zapf et al., 1995). Colo-320 (DSMZ ACC144), L1210 (ATCC CCI 219) and HL-60 cells (DSMZ ACC3) were grown in RPMI 1640 medium (Invitrogen) and MDA-MB-231 (ATCC HTB-26) and MCF7 cells (ATCC HTB-22) were grown in D-MEM medium (Invitrogen); the media were supplemented with 10% inactivated fetal calf serum (Invitrogen), 65 μg/ml of penicillin G and 100 μg/ml of streptomycin sulphate. Cytotoxic assays were carried out in 96-wellplates with 5 × 10\(^4\) cells/ml. After 72 h of incubation the IC\(_{50}\) value was photometrically determined with Giemsa-staining or with the XTT cell proliferation assay. The minimal inhibitory concentrations against bacteria and fungi were determined as described previously (Anke et al., 1989).

Results and Discussion

Isolation and structural elucidation

Xylarone (1) and 8,9-dehydroxyxylarone (2, Fig. 1) were obtained by an activity-guided isolation procedure using L1210 cells as test organisms. The spectroscopic data indicated that they are structurally related, and that they differ in their oxidation status. While the elemental composition of 1 is C\(_{13}\)H\(_{18}\)O\(_3\), as suggested by HRMS experiments, 2 contains two hydrogen atoms less. Inspection of the NMR spectra (\(^1\text{H}\) and \(^{13}\text{C}\) NMR data are presented in Table I) reveals that a propyl group in 1 has been oxidized to a propenyl group in 2. For xylarone (1), the elemental composition shows that the compound has five unsaturations, but the conclusion that the molecule has one carbonyl group and three carbon-carbon double bonds (and thereby contains one ring) was not self-evident because of the polarized carbon-carbon double bonds resulting in unusual carbon shifts. However, starting at the saturated end of the molecule, COSY correlations from 10-H\(_3\) via 9-H\(_2\) and 8-H\(_2\) to 7-H show that the propyl group is attached to a trisubstituted carbon-carbon double bond. 8-H\(_2\) give HMBC correlations to both C-7 and C-6 while 12-H\(_3\) give HMBC correlations to C-5, C-6 and C-7. The chemical shift of C-5 (160.2 ppm) indicates that it is unsaturated and oxygenated, and HMBC correlations from 4-H to C-5 and C-6 show that C-4 (91.6 ppm) is attached to C-5. The pro-
tons of a methoxy group give strong HMBC correlations to C-3 but also a weak correlation to C-4, and together with the additional HMBC correlations from 4-H to C-2 and C-3 it can be concluded that C-4 is followed by a methoxylated C-3 and thereafter C-2. The remaining methyl group gives HMBC correlations to C-1, C-2 and C-3, and is consequently positioned at C-2. In order to comply with the restrictions imposed by the elemental composition, C-1 must be a carbonyl group in a lactone, connected to C-5. The configuration of the C-6/C-7 double bond was determined by the correlation observed between 8-H2 and 12-H3 in the NOESY spectrum. For 8,9-dehydroxylarone (2), as mentioned above, the difference is that C-8/C-9 is oxidized to a double bond. The configurations of the double bonds of 2 were determined by the NOESY correlations between 8-H and 10-H3 as well as 12-H3, and by the 1H–1H coupling constant between 8-H and 9-H.

Biological properties

The cytotoxicity of the isolated compounds was moderate. Xylarone (1) reduced proliferation of the cells by 50% (IC$_{50}$) between 40 μg/ml (Colo-320 cells) and 50 μg/ml (L1210 cells). For the other cell lines (MDA-MB-231, MCF7, HL-60) the IC$_{50}$ value exceeded 50 μg/ml. 8,9-Dehydroxylarone (2) was slightly more active; IC$_{50}$ values were 25 μg/ml for Colo-320 and L1210 cells, for the other cell lines 50 μg/ml (HL-60) or higher (MDA-MB-231, MCF7). No antibacterial (Bacillus brevis, B. subtilis, Micrococcus luteus, Enterobacter dissolvens) and antifungal (Mucor miehei, Paecilomyces variotii, Penicillium notatum, Nematospora coryli) activities were detected up to 100 μg/ml of 1. The same results were obtained for 2 with the exception of *M. luteus* which was inhibited at 100 μg/ml.

α-Pyrones are widespread in nature and have variable biological functions and activities (McGlacken and Fairlamb, 2005). 2-Pyrone derivatives similar to compounds 1 and 2, phomapyrone A and infectopyrone, were isolated from the stem canker fungus Leptosphaeria maculans (Pedras and Chumala, 2005) and nectriapyrone has been reported from different fungi, e.g. Gyrostoma missouriense (Nair and Carey, 1975), Gliocladium vermoesenii (Avent et al., 1992) or Pestalotiopsis oenotherae (Venkatasubbaiah and Van Dyke, 1991). Among the many structurally diverse secondary metabolites described from members of the genus Xylaria, this report is the first one on α-pyrene derivatives.

Acknowledgement

We thank R. Reiss and A. Meffert for expert technical assistance, and the Swedish Research Council as well as the state of Rheinland-Pfalz for financial support.

Table I. 1H (500 MHz, δ; multiplicity; J) and 13C (125 MHz, δ; multiplicity) NMR spectroscopic data for xylarone (1) and 8,9-dehydroxylarone (2). The spectra were recorded in CDCl$_3$ and the solvent signals (7.26 and 77.0 ppm, respectively) were used as reference. The coupling constants J are given in Hz.

<table>
<thead>
<tr>
<th>Position</th>
<th>1H</th>
<th>13C</th>
<th>1H</th>
<th>13C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>δH</td>
<td>δC</td>
<td>δH</td>
<td>δC</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>165.1; s</td>
<td>–</td>
<td>165.0; s</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>165.9; s</td>
<td>–</td>
<td>165.9; s</td>
</tr>
<tr>
<td>3</td>
<td>6.11; s</td>
<td>91.6; d</td>
<td>6.15; s</td>
<td>92.1; d</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>160.2; s</td>
<td>–</td>
<td>160.0; s</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>126.1; s</td>
<td>–</td>
<td>123.2; s</td>
</tr>
<tr>
<td>6</td>
<td>6.62; t; 7.4</td>
<td>135.3; d</td>
<td>7.12; d; 11.2</td>
<td>132.2; d</td>
</tr>
<tr>
<td>7</td>
<td>2.21; q; 7.4</td>
<td>30.7; t</td>
<td>6.42; dd; 127.4; d</td>
<td>11.2, 15.5</td>
</tr>
<tr>
<td>8</td>
<td>1.50; hex.; 7.4</td>
<td>22.2; t</td>
<td>6.10; dd; 6.7; 136.6; d</td>
<td>15.5</td>
</tr>
<tr>
<td>9</td>
<td>0.95; t; 7.4</td>
<td>13.9; q</td>
<td>1.89; d; 6.7</td>
<td>19.0; q</td>
</tr>
<tr>
<td>10</td>
<td>1.95; s</td>
<td>8.6; q</td>
<td>1.94; s</td>
<td>8.6; q</td>
</tr>
<tr>
<td>11</td>
<td>1.89; s</td>
<td>12.4; q</td>
<td>1.97; s</td>
<td>12.4; q</td>
</tr>
<tr>
<td>OMe</td>
<td>3.92; s</td>
<td>56.0; q</td>
<td>3.93; s</td>
<td>56.0; q</td>
</tr>
</tbody>
</table>
