Lichen Secondary Metabolites from the Cultured Lichen Mycobionts of *Teloschistes chrysophthalmus* and *Ramalina celastri* and their Antiviral Activities

Alejandra T. Fazio\(^a\), Mónica T. Adler\(^a\), María D. Bertoni\(^a\), Claudia S. Sepúlveda\(^b\), Elsa B. Damonte\(^b\), and Marta S. Maier\(^c,\)*

\(^a\) Laboratorio de Liqueñología, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina

\(^b\) Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina

\(^c\) Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina. Fax: 541145763385. E-mail: maier@qo.fcen.uba.ar

* Author for correspondence and reprint requests

Z. Naturforsch. 62c, 543–549 (2007); received November 30, 2006/February 27, 2007

Lichens and spore-derived cultured mycobionts of *Teloschistes chrysophthalmus* and *Ramalina celastri* were studied chemically, and results indicated that they produced, respectively, parietin and usnic acid as major secondary metabolites, which were purified and identified. Identification of the compounds was performed by high performance liquid chromatography and structural elucidation by nuclear magnetic resonance (\(^1\)H) and electron impact mass spectrometry. Usnic acid exhibited antiviral activity whereas parietin had a virucidal effect against the arenaviruses Junín and Tacaribe.

*Key words: Lichen Mycobiont, Parietin, Usnic Acid*