Enantioselective Hydrolysis of Bromo- and Methoxy-Substituted 1-Phenylethanol Acetates Using Carrot and Celeriac Enzymatic Systems

Wanda K. Ma˛czka and Agnieszka Mironowicz*

Department of Chemistry, Wrocław University of Environmental and Life Science, ul. Norwida 25, 50-375 Wrocław, Poland. Fax: (+4871) 3284124.
E-mail: amiron@ozi.ar.wroc.pl

* Author for correspondence and reprint requests

Dedicated to Prof. Antoni Siewiński on the occasion of his 80th birthday

Enantioselective hydrolysis of bromo- and methoxy-substituted 1-phenylethanol acetates was conducted using comminuted carrot (Daucus carota L.) and celeriac (Apium graveolens L. var. rapaceum) roots. Hydrolysis of the acetates led to alcohols, preferentially to R-(+)-enantiomers. Efficiencies of both reactions – hydrolysis of the acetates with an electron-donating methoxy group and oxidation of the resulting alcohols – increased in the following order: ortho < meta < para. The presence of an electron-withdrawing bromine atom in the aromatic ring had the opposite effect. Oxidation of alcohols with both types of substituents in the aromatic ring showed that location of a substituent had stronger impact on the oxidation rate than its electronic properties.

Key words: Vegetable, Hydrolysis, Oxidation