Toxicity and Metabolism of the Chloral-Derived Mammalian Alkaloid 1-Trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo) in PC12 Cells

Gerhard Bringmann a,*, Doris Feineis a, Miriam Münchbach a, Ralf God a, Karl Peters b, Eva-Maria Peters b, Rainald Mössner c, and Klaus-Peter Lesch c

a Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany. Fax: (49) 9318884755. E-mail: bringman@chemie.uni-wuerzburg.de
b Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70506 Stuttgart, Germany
c Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universität Würzburg, Füchsleinstraße 15, D-97080 Würzburg, Germany

* Author for correspondence and reprint requests

Z. Naturforsch. 61c, 601–610 (2006); received February, 2006

Chloral-derived β-carbolines, which are structurally similar to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 5), are discussed to contribute to neuronal cell death in idiopathic Parkinson’s disease. The cytotoxicity of 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo, 4) to neuronal-like clonal pheochromocytoma PC12 cells was examined by the determination of lactate dehydrogenase (LDH) release. After incubation for 48 h, 4 showed a strong dose-dependent cytotoxic activity towards PC12 cells with an ED50 value of 230 µM. In PC12 cells reductive dehalogenation of 4 was observed giving rise to the formation of 1-dichloromethyl-1,2,3,4-tetrahydro-β-carboline (6) as a main TaClo metabolite exhibiting a cytotoxic potential comparable to that of TaClo. An X-ray structure analysis, performed for the trifluoroacetyl derivative of 6, revealed the N-substituent of such a highly chlorinated agent to be dramatically pushed out of the β-carboline ring ‘plane’ due to the high steric demand of the huge dichloromethyl group at C(1).

Key words: 1-Trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo), Rat Phaeochromocytoma (PC12) Cells, Cytotoxicity, Parkinson’s Disease