Overexpression of *celB* Gene Coding for β -Glucosidase from *Pyrococcus furiosus* Using a Baculovirus Expression Vector System in Silkworm, *Bombyx mori*

Xu'Ai Lin^{a,b}, Wei Zhang^a, Yin Chen^b, Bin Yao^{a,*}, and Zhi Fang Zhang^{b,*}

- ^a Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. Fax: 86-10-68975136. E-mail: yaobin@mail.caas.net.cn
- b Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China. Fax: 86-511-5615044. E-mail: zhifangzhang@yahoo.com
- * Authors for correspondence and reprint requests

using this system.

Z. Naturforsch. **61c**, 595–600 (2006); received November 22, 2005/January 13, 2006

 β -Glucosidase is a member of the glycosyl hydrolases that specifically catalyze the hydrolysis of terminal nonreducing β -D-glucose residues from the end of various oligosaccharides with the release of β -D-glucose. *CelB* gene, encoding the thermostable β -glucosidase, was amplified from the *Pyrococcus furiosus* genome and then cloned into the baculoviral transfer vector under the control of the *polyhedrin* gene promoter. After co-transfection with the genetically modified parental *Bombyx mori* nucleopolyhedrovirus (BmNPV), the recombinant virus containing *celB* gene was used to express β -glucosidase in silkworm. The recombinant β -glucosidase was purified to about 81% homogeneity in a single heat-treatment step. The optimal activity of the expressed β -glucosidase was obtained at pH 5.0 and about 105 °C; divalent cations and high ionic strength did not affect the activity remarkably. This suggested that the enzymatic characteristics of recombinant β -glucosidase were similar to the native counterpart. The expressed β -glucosidase accounted for more than 10% of silkworm total haemolymph proteins according to the protein quantification and densimeter scanning. The expression level reached 10,199.5 U per ml haemolymph and 19,797.4 U per silkworm larva,

and the specific activity of the one-step purified crude enzyme was 885 U per mg. It was demonstrated to be an attractive approach for mass production of thermostable β -glucosidase

Key words: β-Glucosidase, Pyrococcus furiosus, Baculovirus Expression Vector System