Production and Properties of Biosurfactants from a Newly Isolated
Pseudomonas fluorescens HW-6 Growing on Hexadecane

Evgenia Vasileva-Tonkovaa,*, Danka Galabovaa, Emilia Stoimenovab, and Zdravko Lalchevb

a Bulgarian Academy of Sciences, Institute of Microbiology, Department of Microbial Biochemistry, Acad. G. Bonchev str., bl. 26, 1113 Sofia, Bulgaria. Fax: +359-2-8700-109. E-mail: evaston@yahoo.com

b Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov str., 1164 Sofia, Bulgaria

* Author for correspondence and reprint requests

Z. Naturforsch. 61c, 553–559 (2006); received January 16, 2006

The newly isolated from industrial wastewater *Pseudomonas fluorescens* strain HW-6 produced glycolipid biosurfactants at high concentrations (1.4–2.0 g l-1) when grown on hexadecane as a sole carbon source. Biosurfactants decreased the surface tension of the air/water interface by 35 mN m-1 and possessed a low critical micelle concentration value of 20 mg l-1, which indicated high surface activity. They efficiently emulsified aromatic hydrocarbons, kerosene, \textit{n}-paraffins and mineral oils. Biosurfactant production contributed to a significant increase in cell hydrophobicity correlated with an increased growth of the strain on hexadecane. The results suggested that the newly isolated strain of *Ps. fluorescens* and produced glycolipid biosurfactants with effective surface and emulsifying properties are very promising and could find application for bioremediation of hydrocarbon-polluted sites.

\textit{Key words:} Biosurfactants, Glycolipids, Hydrophobicity, *Pseudomonas fluorescens*