Characterization and Biocontrol Ability of Fusion Chitinase in *Escherichia coli* Carrying Chitinase cDNA from *Trichothecium roseum*

Hongyu Pan\(^a,b\), Yi Wei\(^c\), Furong Xin\(^c\), Mingguo Zhou\(^a\), and Shihong Zhang\(^b,\*)

\(^a\) College of Plant Protection, Nanjing Agricultural University, Nanjing/Jiangsu 210095, China
\(^b\) College of Plant Science, Jilin University, Changchun/Jilin 130062, China.
Fax: +86-431-6758762. E-mail: zhang_sh@jlu.edu.cn
\(^c\) Shandong Cotton Research Center, Jinan/Shandong 250100, China
\(*\) Author for correspondence and reprint requests

Z. Naturforsch. **61c**, 397–404 (2006); received September 19/November 23, 2005

The antifungal mechanism of mycoparasitic fungi involves fungal cell wall degrading enzymes such as chitinases. *Trichothecium roseum* is an important mycoparasitic fungus with significant antifungal ability, but studies on chitinases of *T. roseum* were poor. Here, we report a novel chitinase cDNA isolated from *T. roseum* by PCR amplification based on conserved chitinase sequences. Southern blot analysis suggested that a single copy of the gene exists in the genome of *T. roseum*. The deduced open reading frame of 1,143 nucleotides encodes a protein of 380 amino acids with a calculated molecular weight of 41.6 kDa. The fusion chitinase expressed in *Escherichia coli* has been purified by single-step chromatography. It has a pI of pH 5.4 and expresses a thermal stability, but is insensitive to pH in a broad pH range. According to expectation, *E. coli* efficiently yielded a high amount of active chitinase. Remarkably, the fusion chitinase offered high antifungal activity.

Key words: Fusion Chitinase, Characterization and Biocontrol Ability, *Trichothecium roseum*