Cytotoxic Abietane Diterpenes from Hyptis martiusii Benth.

Edigênia Cavalcante da Cruz Araújo^a, Mary Anne S. Lima^a, Raquel C. Montenegro^b, Marcelle Nogueira^b, Letícia V. Costa-Lotufo^{b,*}, Cláudia Pessoa^b, Manoel Odorico de Moraes^b, and Edilberto R. Silveira^a

- ^a Department of Organic and Inorganic Chemistry, Federal University of Ceará, P.O. Box 12200, 60021-940 Fortaleza, Ceará, Brazil
- ^b Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, P.O. Box 3157, 60430-270 Fortaleza, Ceará, Brazil.
 Fax: 558540098333. E-mail: lvcosta@secrel.com.br
- * Author for correspondence and reprint requests
- Z. Naturforsch. 61c 177-183 (2006); received November 10, 2005

From roots of *Hyptis martiusii* Benth. two tanshinone diterpenes were isolated, the new 7β -hydroxy-11,14-dioxoabieta-8,12-diene (1) in addition to the known 7α -acetoxy-12-hydroxy-11,14-dioxoabieta-8,12-diene (7α -acetoxyroyleanone) (2). Structures of 1 and 2 were established by spectroscopic means. The cytotoxic activity against five cancer cell lines was evaluated. Compounds 1 and 2 displayed considerable cytotoxic activity against several cancer cell lines with IC₅₀ values in the range of 3.1 to 11.5 μ g/ml and 0.9 to 7.6 μ g/ml, respectively. The cytotoxic activity seemed to be related to inhibition of DNA synthesis, as revealed by the reduction of 5-bromo-2'-deoxyuridine incorporation and induction of apoptosis, as indicated by the acridine orange/ethidium bromide assay and morphological changes after 24 h of incubation in leukemic cells.

Key words: Hyptis martiusii, Labiatae, Abietane Diterpenes, Cytotoxic Activity