Effects of Fifteen Rare-Earth Metals on Ca²⁺ Influx in Tobacco Cells Cun Lin^a, Takashi Kadono^a, Kazuharu Yoshizuka^a, Takuya Furuichi^b, and Tomonori Kawano^a,* - ^a Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan. E-mail: Kawanotom@env.kitakyu-u.ac.jp ^b Graduate School of Medicine, Nagoya University, Nagoya 464-8550, Japan - * Author for correspondence and reprint requests Z. Naturforsch. 61c, 74-80 (2006); received May 24, 2005 Effects of naturally existing rare-earth metals (REMs; atomic numbers, 39, 57–60, 62–71; Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu), added as chloride salts, on Ca²⁺ influx induced by two different stimuli, namely hypoosmotic shock and hydrogen peroxide, were examined in a suspension-cultured transgenic cell line of BY-2 tobacco cells expressing aequorin, a Ca²⁺-sensitive luminescent protein in cytosol. Most REM salts used here showed inhibitory effect against Ca²⁺ influx. Especially NdCl₃, SmCl₃, EuCl₃, GdCl₃ and TbCl₃ showed the most robust inhibitory action. In contrast, LuCl₃, YbCl₃, ErCl₃ and YCl₃ were shown to be poor inhibitors of Ca²⁺ influx. Since REMs tested here form a sequential range of ionic radii from 86.1 to 103.2 pm and the optimal range of ionic radii required for blocking the flux of Ca²⁺ was determined for each stimulus. The hydrogen peroxideinduced Ca²⁺ influx was optimally blocked by REMs with a broad range of ionic radii (93.8– 101 pm) which is slightly smaller than or similar to that of Ca²⁺ (100 pm), while the hypoosmotically induced flux of Ca²⁺ was inhibited optimally by few REMs with a narrower range of relatively smaller ionic radii around that of Gd³⁺ (93.8 pm) a well known inhibitor of stretch-activated channels. Possible applications of such series of channel blockers in elucidation of plant signal transduction pathways are encouraged. Key words: Calcium, Ion Channel, Ionic Radius, Rare-Earth Elements