Nocturnal Uptake and Assimilation of Nitrogen Dioxide by C3 and CAM Plants

Misa Takahashi^{a,b,*}, Daisuke Konaka^a, Atsushi Sakamoto^{a,b}, and Hiromichi Morikawa^{a,b}

- Department of Mathematical and Life Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan. Fax: +81-82-424-0749.
 E-mail: mtakahas@sci.hiroshima-u.ac.jp
- ^b Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
- * Author for correspondence and reprint requests
- Z. Naturforsch. 60 c, 279-284 (2005)

In order to investigate nocturnal uptake and assimilation of NO_2 by C3 and crassulacean acid metabolism (CAM) plants, they were fumigated with 4 µl l⁻¹ 15N-labeled nitrogen dioxide (NO₂) for 8 h. The amount of NO₂ and assimilation of NO₂ by plants were determined by mass spectrometry and Kjeldahl-nitrogen based mass spectrometry, respectively. C3 plants such as kenaf (Hibiscus cannabinus), tobacco (Nicotiana tabacum) and ground cherry (Physalis alkekengi) showed a high uptake and assimilation during daytime as high as 1100 to 2700 ng N mg-1 dry weight. While tobacco and ground cherry strongly reduced uptake and assimilation of NO₂ during nighttime, kenaf kept high nocturnal uptake and assimilation of NO₂ as high as about 1500 ng N mg⁻¹ dry weight. Stomatal conductance measurements indicated that there were no significant differences to account for the differences in the uptake of NO₂ by tobacco and kenaf during nighttime. CAM plants such as Sedum sp., Kalanchoe blossfeldiana (kalanchoe) and Aloe arborescens exhibited nocturnal uptake and assimilation of NO2. However, the values of uptake and assimilation of NO2 both during daytime and nighttime was very low (at most about 500 ng N mg⁻¹ dry weight) as compared with those of above mentioned C3 plants. The present findings indicate that kenaf is an efficient phytoremediator of NO₂ both during daytime and nighttime.

Key words: Assimilation of NO2, CAM Plant, Kenaf, Stomatal Conductance

Introduction

Plants take up nitrogen dioxide (NO₂), a major urban air pollutant, and assimilate its nitrogen to organic compounds. Accordingly, several investigations proposed that plants should be utilized to reduce the pollutant concentrations in the atmosphere (Hill, 1971; Yoneyama et al., 1979, 2002; Okano et al., 1986; Weber et al., 1995; Morikawa et al., 1998, 2002, 2003a,b; Takahashi et al., 2001; Morikawa and Erkin, 2003). NO2 has been thought to be taken up through stomata (Saxe, 1986; Thoene et al., 1991; Neubert et al., 1993). The abilities of NO₂ uptake by plants varied by environmental conditions such as air temperature, relative humidity, illumination intensity, wind, CO₂ concentration and NO2 concentration (Srivastava et al., 1974; Geßler et al., 2000). Since the opening of stomata is regulated by light, the amount of NO₂ taken up by plants should be reduced during nighttime, and the amount of NO2 taken in the dark condition is reportedly 10 to 36% of its lightcondition value in various plants species (Srivastava et al., 1974; Saxe, 1986; Thoene et al., 1991; Neubert et al., 1993; Segschneider et al., 1995) except for spinach (Kaji et al., 1980). Spinach is reported to take up NO₂ at the same level during daytime and nighttime (Kaji et al., 1980). In this study we investigated nocturnal uptake and assimilation of NO₂ by C3 and crassulacean acid metabolism (CAM) plants. Since CAM plants are known to open stomata and take up carbon dioxide nocturnally, we expected that these plants could exhibit an active nocturnal uptake and assimilation of NO₂.

Material and Methods

Plant materials

Seeds of tobacco (*Nicotiana tabacum*) and kenaf (*Hibiscus cannabinus*) were sown in pots containing vermiculite and perlite (1:1, v/v) and grown at 22 ± 0.3 °C and $70 \pm 4\%$ relative humidity for 6 to 9 weeks in a growth chamber under the light of $100 \,\mu$ mol photons m⁻² s⁻¹ (16 h light/8 h dark). Ground cherry (*Physalis alkekengi* var. *franchetii*),

Sedum sp., kalanchoe (Kalanchoe blossfeldiana) and Aloe arborescens were purchased from local shops and were maintained in a greenhouse for 1–2 weeks before use.

Fumigation with NO₂

Plants were fumigated with $4\,\mu$ l l⁻¹ ¹⁵N-labeled NO₂ at 22.0 ± 0.3 °C and a relative humidity of 70 ± 4% for 8 h in a fumigation chamber as described previously (Morikawa *et al.*, 1998). Fumigation in the light (70 μ mol photons m⁻² s⁻¹) was performed during daytime (9:00 am–5:00 pm), and that in the dark was performed during nighttime (9:00 pm–5:00 am). Prior to NO₂ fumigation, plants were transferred to the fumigation chamber and adapted in the dark or light for 12 h for daytime or nighttime fumigation, respectively.

Analysis of total, Kjeldahl and inorganic nitrogen derived from NO₂

After fumigation with NO₂, the leaves were harvested and lyophilized. The total nitrogen (reflecting NO₂ uptake) was measured by an EA-MS analyzer consisting of an elemental analyzer (EA1108 CHNS/O; Fisons Instruments, Milan, Italy) directly connected to a mass spectrometer (Delta S; Thermo-Finnigan, Bremen, Germany) as reported previously (Morikawa *et al.*, 2004). The Kjeldahl-N based mass spectrometry by the EA-MS analyzer was performed to determine the reduced nitrogen (reflecting NO₂ assimilation) in leaves as

reported elsewhere (Takahashi et al., 2003; Morikawa et al., 2004).

Nitrate-nitrogen and nitrite-nitrogen derived from NO₂ in fumigated leaves were determined as reported previously (Kawamura *et al.*, 1996; Takahashi *et al.*, 2003; Morikawa *et al.*, 2004). Briefly, the amount of nitrate and nitrite content in fumigated leaf samples was first determined by capillary electrophoresis (Kawamura *et al.*, 1996). The atomic percentage of ¹⁵N in the nitrate and nitrite was then determined as follows; nitrate and nitrite were collected using ion exchange chromatography and then reduced to ammonia by Devarda's alloy. The ammonia was then concentrated by the Conway diffusion method (Conway and Byrne, 1933) and the concentrated ammonia was analyzed using the EA-MS analyzer.

Measurement of stomatal conductance

Stomatal conductance to water vapour was measured with fully-expanded leaves of kenaf and to-bacco using an LI-6400 (LI-COR, Lincoln, NE) under the same conditions for fumigation describe above in the presence or absence of NO₂.

Results

Table I summarizes the uptake and assimilation of NO_2 upon fumigation with $4 \mu l l^{-1} NO_2$ for 8 h in the light during daytime and in the dark during nighttime. Three C3 plants such as kenaf, tobacco and ground cherry showed a similar daytime up-

Table I. Uptake and assimilation of nitrogen dioxide by various plants during daytime and nighttime.

Species	ecies Uptake [ng N mg ⁻¹ dry			
	Daytime	Nighttime	Daytime	Nighttime
Hibiscus cannabinus (kenaf)	2705 ± 214	1546 ± 618	2755 ± 215	1780 ± 117
Nicotiana tabacum (tobacco)	1752 ± 941	221 ± 113	1140 ± 574	244 ± 182
Physalis alkekengi (ground cherry)	2479 ± 415	155 ± 40	1703 ± 181	137 ± 29
Sedum sp.	452 ± 238	358 ± 31	298 ± 194	277 ± 67
Kalanchoe blossfeldiana (kalanchoe)	77 ± 17	36 ± 11	64 ± 16	29 ± 11
Aloe arborescens	43 ± 10	23 ± 4	29 ± 7	13 ± 2

Data represent mean \pm SD. The number of replicates is 4 to 17.

take of NO_2 as high as 1800 to 2700 ng N mg⁻¹ dry weight. Nighttime uptake of NO_2 by tobacco and ground cherry was greatly decreased (less than 13% of the respective daytime value). In a sharp contrast, kenaf exhibited a noticeable nocturnal uptake of NO_2 more than 50% of its daytime value.

All of the three C3 plants showed a daytime assimilation of NO_2 more than 65% of the daytime uptake. This result keeps line with our previous report that more than 50% of NO_2 taken up into plant leaves is assimilated to organic nitrogen (Takahashi *et al.*, 2003). Nighttime assimilation of NO_2 by tobacco and ground cherry was 8–21% of respective daytime value. To our surprise, kenaf exhibited a nocturnal assimilation of NO_2 as high as 1780 ng N mg⁻¹ dry weight on average, which corresponded to well more than 50% of the daytime value of this plant.

On the other hand, obligate CAM plants studied here, kalanchoe and *A. arborescens*, and a C3/CAM intermediate plant, *Sedum* sp., appeared to have a low NO₂ uptake both during daytime and nighttime; their uptake level (at most 500 ng N mg⁻¹ dry weight) was more or less one or two orders of magnitude less than that of the C3 plants investigated here (see Table I). Their nocturnal assimilation of NO₂ was close to 50% or even greater than respective daytime value. This is an indication that although the absolute values of NO₂ uptake by these CAM plants are low, their daytime and nighttime NO₂ assimilation activity does not largely differ.

Table II summarizes the amount of nitrate-nitrogen and nitrite-nitrogen derived from NO₂ in the leaves of kenaf and tobacco after daytime and nighttime fumigation with NO₂ for 8 h. Since the nitrogen derived from NO₂ taken up into plant body is rapidly converted into organic nitrogen

(Morikawa et al., 2004), the nitrate-nitrogen and nitrite-nitrogen detected in kenaf and tobacco leaves shown in this table can be considered to reflect "extra" NO₂ that remained unassimilated.

The level of nitrate-nitrogen in kenaf after nighttime fumigation was approximately four times greater than that after daytime fumigation, suggesting that the level of "unassimilated NO2-nitrogen" was four times greater after nighttime fumigation than after daytime fumigation. It is likely that kenaf retains a high capability of NO2 uptake even in the dark during nighttime. In to-bacco leaves, the level of nitrate-nitrogen after nighttime fumigation was approximately four times less than that after daytime fumigation. This suggests that tobacco has a limited NO2 uptake capability during nighttime.

The level of nitrate-nitrogen after daytime fumigation was almost the same between kenaf and tobacco, whereas it was more than ten times greater in kenaf than in tobacco after nighttime fumigation. This agrees with the abovementioned suggestion that kenaf leaves retain a high uptake capability of NO₂ in the dark during nighttime.

On the other hand, no or very low level of nitrite-nitrogen was detected in both, plant leaves after daytime- and nighttime-fumigation. Since some part of NO₂ taken up into plant body is thought to be converted to nitrite (Wellburn, 1990), the present finding of no or very low nitrite implies that nitrite formed from NO₂ was rapidly detoxified (assimilated) in the plant leaves both during daytime and nighttime.

Fig. 1 shows the changes in stomatal conductance observed in the leaves of kenaf and tobacco before and after fumigation with NO₂. Stomatal conductance of kenaf in the light during daytime was 0.3 ± 0.09 mol H₂O m⁻² s⁻¹ before NO₂ fumigation. Upon the onset of NO₂ fumigation the

Table II. Nitrate-nitrogen and nitrite-nitrogen derived from NO₂ detected in the leaves of kenaf and tobacco after fumigation with ¹⁵N-labeled NO₂ for 8 h in the light during daytime and in the dark during nighttime.

	Nitrate-N [ng N mg ⁻¹ dry weight]			Nitrite-N [ng N mg ⁻¹ dry weight]	
	Light during the day	Dark during the night	Light during the day	Dark during the night	
Kenaf Tobacco	63.8 ± 14.8 ^a 87.4 ± 11.9	246 ± 46 22.2 ± 33.3	n.d. ^b 1.33 ± 1.54	n.d. n.d.	

^a Data represent means of three replicates ± SD.

^b n.d., not determined.

Fig. 1 Stomatal conductance of kenaf and tobacco leaves in the light and dark before and after NO₂ fumigation. Data represent mean of the values of three leaves, each of which was taken from different individual. The bars show represent SD when their value exceeds the size of the circle or square symbol.

stomatal conductance immediately decreased to about 30% of the value before the fumigation, and thereafter it did not change appreciably throughout the experiment. In the dark, kenaf showed stomatal conductance as low as 0.02 to 0.04 mol $\rm H_2O$ m⁻² s⁻¹ both in the presence and absence of atmospheric $\rm NO_2$.

In the light tobacco showed a stomatal conductance of 0.11 ± 0.01 mol H_2O m⁻² s⁻¹ before NO_2 fumigation and the first 2 h of NO_2 fumigation, and thereafter it decreased to 0.04 mol H_2O m⁻² s⁻¹ or less, which is very close to the level of kenaf in the dark. In the dark, the level of stomatal conductance of tobacco was similar to or slightly smaller than that of kenaf in the dark (see Fig. 1).

Discussion

Our present finding that tobacco and ground cherry showed a very limited nighttime uptake of NO₂ keeps line with the results reported by the previous authors with various plant species (Srivastava *et al.*, 1974; Saxe, 1986; Thoene *et al.*, 1991; Neubert *et al.*, 1993; Segschneider *et al.*, 1995; Morikawa *et al.*, 1998).

Furthermore, our finding that kenaf exhibited a noticeable nocturnal uptake and assimilation of NO_2 more than 50% of its respective daytime value is in line with the result of spinach reported by previous authors (Kaji *et al.*, 1980).

Since CAM plants are known to open stomata and take up carbon dioxide nocturnally, we expected that these plants could exhibit an active nocturnal uptake and assimilation of NO₂. Those CAM plants such as *Sedum* sp., kalanchoe and *A. arborescens* studied here did show nocturnal uptake and assimilation of NO₂ that was close to 50% or even higher than respective daytime value, confirming that they possess a similar activity during day- and nighttime as expected. However, uptake and assimilation of NO₂ by the CAM plants appeared to be one or two orders of magnitude less than that of the C3 plants investigated here (see Table I).

The NO₂-nitrogen taken up into the plant body is rapidly converted into organic nitrogen (Morikawa *et al.*, 2004). The present analysis of inorganic nitrogen derived from NO₂ (Table II) showed that upon nighttime fumigation kenaf leaves accumulate greater level of "unassimilated NO₂-nitrogen" than tobacco leaves. This finding is in accordance with the above mentioned conclusion that the capability of kenaf to take up NO₂ nocturnally is much greater than that of tobacco.

NO₂ has been thought to be taken up through stomata (Saxe, 1986; Thoene et al., 1991; Neubert et al., 1993), and therefore stomatal resistance to diffusion of NO₂ is thought to be the main determinating factor for the uptake of NO₂ by plants (Saxe, 1986; Neubert et al., 1993). Our present study of stomatal conductance (Fig. 1) indicated that kenaf possesses a high level of stomatal conductance during daytime fumigation, but that its nighttime value was very similar to that of tobacco. It has been reported that NO₂ is taken up not only through stomata but also the outer leaf surface such as the cuticle layer (Kisser-Priesack et al., 1987; Larcher, 1995; Geßler et al., 2002). It is therefore likely that the cuticle layer of kenaf leaves is somehow more permeable to NO2 than that of tobacco leaves.

Our present finding that kenaf keeps about 50% of its daytime level may in turn suggest that the present illumination condition (70 μ mol photons m⁻² s⁻¹) may not be strong enough for NO₂ assimilation. We therefore performed fumigation experiments under natural light using a similar fumigation chamber that was installed in a confined greenhouse. It was found that the daytime uptake of NO₂ by kenaf under the natural light was very similar to the values shown in Table I. This result implies that kenaf plants had enough reducing power for NO₂ assimilation supplied by the pre-

sent fluorescent lamp illumination. This behavior of kenaf plants deserves further investigation.

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research (nos. 13780454 and

15710149) from the Japan Society for the Promotion of Science, by the Research for the Future Program, Japan Society for the Promotion of Science (JSPS-RFTF96L00604) and by a Grantin-Aid for Creative Scientific Research (no. 13GS0023) from the Japan Society for the Promotion of Science.

- Conway E. J. and Byrne A. (1933), An absorption apparatus for the micro-determination of certain volatile substances. I. The microdetermination of ammonia. Biochem. J. 27, 419–429.
- Geßler A., Rienks M., and Rennenberg H. (2000), NH₃ and NO₂ fluxes between beech trees and the atmosphere correlation with climatic and physiological parameters. New Phytol. **147**, 539–560.
- Geßler A., Rienks M., and Rennenberg H. (2002), Stomatal uptake and cuticular adsorption contribute to dry deposition of NH₃ and NO₂ to needles of adult spruce (*Picea abies*) trees. New Phytol. **156**, 179–194.

Hill A. C. (1971), Vegetation: A sink for atmospheric pollutants. J. Air Pollut. Contr. Ass. 21, 341–346.

- Kaji M., Yoneyama T., Tosuka, T., and Iwaki H. (1980), Absorption of atmospheric NO₂ by plants and soils VI. Transformation of NO₂ absorbed in the leaves and transfer of the nitrogen through the plants. Res. Rep. Nat. Inst. Environ. Stud. No. 11, 51–58.
- Kawamura Y., Takahashi M., Ariumura G., Isayama T., Irifune K., Goshima N., and Morikawa H. (1996), Determination of levels of NO₃⁻, NO₂⁻, and NH₄ + ions in leaves of various plants by capillary electrophoresis. Plant Cell Physiol. **37**, 878–880.
- Kisser-Priesack G. M., Scheunert I., and Gnatz G. (1987), Uptake of ¹⁵NO₂ and ¹⁵NO by plant cuticles. Naturwissenschaften **74**, 550–551.
- Larcher W. (1995), Physiological Plant Ecology, 3rd ed. Springer Publ., Berlin, Germany, pp. 321–448.
- Morikawa H. and Erkin O. C. (2003), Basic processes in phytoremediation and some applications to air pollution control. Chemosphere **52**, 1553–1558.
- Morikawa H., Higaki Á., Nohno M., Takahasi M., Kamada M., Nakata M., Toyohara G., Okamura Y., Matsui K., Kitani S., Fujita K., Irifune K., and Goshima N. (1998), More than a 600-fold variation in nitrogen dioxide assimilation among 217 plant taxa. Plant Cell Environ. **21**, 180–190.
- Morikawa H., Takahashi M., and Arimura G. (2002), Manipulation of genes for nitrogen metabolism in plants. In: Air Pollution and Biotechnology in Plants (Oomasa K., Saji H., Youssefian S., and Kondo N., eds.). Springer Publ., Tokyo, pp. 383–401.

- Morikawa H., Takahashi M., Hakata M., and Sakamoto A. (2003a), Screening and genetic manipulation of plants for decontamination of pollutants from the environments. J. Biotechnol. Adv. 22, 9–15.
- Morikawa H., Takahashi M., and Kawamura Y. (2003b), Air pollution clean up using pollutant-philic plantsmetabolism of nitrogen dioxide and genetic manipulation of related genes. In: Phytoremediation: Transformation and Control of Contaminants (McCutcheon S. C. and Schnoor J. L., eds.). John Wiley and Sons, Inc., New York, pp. 765–786.
- Morikawa H., Takahashi M., Sakamoto A., Matubara T., Arimura G., Kawamura Y., Fukunaga K., Fujita K., Sakurai N., Hirata T., Ide H., Nonoyama N., and Suzuki H. (2004), Formation of unidentified nitrogen in plants: an implication for a novel nitrogen metabolism. Planta **219**, 14–22.
- Neubert A., Kley D., Wildt J., Segschneider H. J., and Förstel H. (1993), Uptake of NO, NO₂ and O₃ by sunflower (*Helianthus annuus*) and tobacco plants (*Nicotiana tabacum*): Dependence on stomatal conductivity. Atmos. Environ. **27A**, 2137–2145.
- Okano K., Fukuzawa T., Tazaki T., and Totsuka T. (1986), ¹⁵N Dilution method for estimating the absorption of atmospheric NO₂ by plants. New Phytol. **102**, 73–84.
- Saxe H. (1986), Stomatal-dependent and stomatal-independent uptake of NO_x. New Phytol. **103**, 199–205.
- Segschneider H.-J., Wildt J., and Förstel H. (1995), Uptake of ¹⁵NO₂) during exposures in light and darkness: quantities, relationship to stomatal aperture and incorporation into different nitrogen pools within the plant. New Phytol. **131**, 109–119.
- Srivastava H. S., Jolliffe P. A., and Runeckles V. C. (1974), Inhibition of gas exchange in bean leaves by NO₂. Can. J. Bot. **53**, 466–474.
- Takahashi M., Sasaki Y., Ida S., and Morikawa H. (2001), Nitrite reductase gene enrichment improves assimilation of nitrogen dioxide in *Arabidopsis*. Plant Physiol. **126**, 731–741.
- Takahashi M., Kondo K., and Morikawa H. (2003), Assimilation of nitrogen dioxide in selected plant taxa. Acta Biotechnol. **23**, 241–247.

- Thoene B., Schröder P., Papen H., Egger A., and Rennenberg H. (1991), Absorption of atmospheric NO₂ by spruce (*Picea abies* L. Karst.) trees. I. NO₂ influx and its correlation with nitrate reduction. New Phytol. **117**, 575–585.
- Weber P., Nußbaum S., Fuhrer J., Gfeller H., Schlunegger U. P., Brunold C., and Rennenberg H. (1995), Uptake of atmosphere ¹⁵NO₂ and its incorporation into free amino acids in wheat (*Triticum aestivum*). Physiol. Plant. **94**, 71–77.
- Wellburn A. R. (1990), Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytol. **115**, 395–429.
- Yoneyama T., Sasakawa H., Ishizuka S., and Totsuka T. (1979), Absorption of atmospheric NO₂ by plants and soils. (II) Nitrite accumulation, nitrite reductase activity and diurnal change of NO₂ absorption in leaves. Soil Sci. Plant Nut. **25**, 267–275.

 Yoneyama T., Kim H. Y., Morikawa H., and Srivastava
- Yoneyama T., Kim H. Y., Morikawa H., and Srivastava H. S. (2002), Metabolism and detoxification of nitrogen dioxide and ammonia in plants. In: Air Pollution and Biotechnology in Plants (Oomasa K., Saji H., Youssefian S., and Kondo N., eds.). Springer Publ., Tokyo, pp. 221–234.