of Hopea dryobalanoides

Sahidin^a, Euis H. Hakim^a, Lia D. Juliawaty^a, Yana M. Syah^a, Laily bin Din^b, Emilio L. Ghisalberti^c, Jalifah Latip^b, Ikram M. Said^b, and Sjamsul A. Achmad^{a,*}

a Department of Chemistry, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia. E-mail: sjamsu@indo.net.id

University of Malaysia, 43600 Bangi, Selangor, Malaysia

Cytotoxic Properties of Oligostilbenoids from the Tree Barks

School of Chemistry and Food Technology, Faculty of Science and Technology, National

^c Chemistry, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley, WA 6909, Australia

* Author for correspondence and reprint requests

Z. Naturforsch. **60 c**, 723–727 (2005); received April 26, 2005

A new modified stilbene dimer, diptoindonesin D (1), was isolated from the acetone extract of the tree bark of *Hopea dryobalanoides*, together with seven known compounds, parviflorol (2), (-)-balanocarpol (3), heimiol A (4), hopeafuran (5), (+)-α-viniferin (6), vaticanol B (7) and (-)-hopeaphenol (8). Cytotoxic properties of compounds 1–8 were eval-

uated against murine leukemia P-388 cells. Compound **8** was found to be the most active with IC_{50} of 5.7 μ M. Key words: Diptoindonesin D, Hopea dryobalanoides, Murine Leukemia P-388 Cells