Inhibition of TNF- α Promoter Activity and Synthesis by A11-99-1, a New Cyclopentenone from the Ascomycete *Mollisia melaleuca*

Jan Rether^a, Gerhard Erkel^{a,*}, Olov Sterner^{b,*}, and Timm Anke^a

- ^a Institut für Biotechnologie und Wirkstoff-Forschung e.V. (IBWF), Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany. Fax: +49-631-205-2999. E-mail: erkel@ibwf.de
- ^b Division of Organic and Bioorganic Chemistry, University of Lund, P.O. Box 124, S-22100 Lund, Sweden. Fax: +46-46-222-8209. E-mail: Olov.Sterner@bioorganic.lth.se
- * Authors for correspondence and reprint requests
- Z. Naturforsch. 60c, 478-484 (2005); received February 17, 2005

In a search for inhibitors of the inducible tumor necrosis factor- α (TNF- α) promoter activity and synthesis, a new chlorinated cyclopentenone was isolated from fermentations of the ascomycete *Mollisia melaleuca*. The structure was determined by a combination of spectroscopic techniques. The compound blocked the inducible human TNF- α promoter activity and synthesis with IC₅₀-values of 2.5–5 μ g/ml (8.1–16.1 μ M). Studies on the mode of action of the compound revealed that the inhibition of TNF- α promoter activity is caused by an inhibition of the phosphorylation of the I α B protein which prevents the activation of the transcription factor NF- α B. No cytotoxic, antibacterial and antifungal activities could be observed up to 100 μ g/ml (323 μ M) of the compound.

Key words: Mollisia melaleuca, Cyclopentenone, TNF-α, NF-*α*B