In vitro Study of Flavonoids, Fatty Acids, and Steroids on Proliferation of Rat Hepatic Stellate Cells

Farid A. Badria, Abdel-Aziz A. Dawidar, Wael E. Houssen, and Wayne T. Shier

* Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt. E-mail: faridbadria@yahoo.com

Chemistry Department, Faculty of Sciences, Mansoura University, Mansoura 35516 Egypt

Medicinal Chemistry Department, College of Pharmacy, University of Minnesota, Minneapolis MN 55455 USA

* Author for correspondence and reprint requests

Z. Naturforsch. 60c, 139–142 (2005); received November 9/December 8, 2004

There is a wealth of evidence that hepatic stellate cells (HSCs) orchestrate most of the important events in liver fibrogenesis. After liver injury, HSCs become activated to a profibrogenic myofibroblastic phenotype and can regulate net deposition of collagens and other matrix proteins in the liver. The proliferation of HSCs is mainly stimulated by the platelet-derived growth factor (PDGF). In this study, some compounds from natural resources have been tested for their activity to inhibit PDGF-driven proliferative activity of rat HSCs. Apigenin, quercetin, genistein, daidzin, and biochanin A exhibited >75% inhibitory activity against HSC-T6. It was found that, \(\gamma \)-linolenic (\(\gamma \)-Ln), eicosapentanoic (EPA) and \(\alpha \)-linolenic (\(\alpha \)-Ln) acids showed a high inhibitory effect on proliferation of rat HSCs at 50 nmol/l. Cholest-4-ene-3,6-dione and stigmastone-4-en-3,6-dione are the most active steroids with inhibitory activities >80% and this is most likely due to the presence of the 4-en-3,6-dione moiety in both compounds. These results revealed that the compounds which effectively blocked HSC proliferation may be beneficial in liver fibrosis. Structure-activity relationships (SAR) may provide a basis for rational structure modification.

Key words: Hepatic Stellate Cells, Steroids, Liver Fibrosis