Secondary Metabolite Content in Rhizomes, Callus Cultures and in vitro Regenerated Plantlets of Solidago chilensis

Guillermo Schmeda-Hirschmann ${ }^{\text {a,* }}$, Miguel Jordan ${ }^{\text {b }}$, André Gerth ${ }^{\text {c }}$, and Dirk Wilken ${ }^{\text {c }}$
a Universidad de Talca, Instituto de Química de Recursos Naturales, Laboratorio de
Productos Naturales, Casilla 747, Talca, Chile. Fax: +5671200448. E-mail: schmeda@utalca.cl
b Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Departamento de Ecología, Alameda 340, Santiago, Chile
c BioPlanta GmbH, Deutscher Platz 5, D-04103 Leipzig, Germany

* Author for correspondence and reprint requests
Z. Naturforsch. 60c, 5-10 (2005); received June 23/August 4, 2004

An in vitro culture system leading to the formation of callus and plant regeneration, starting from nodal sections and shoot tips, was developed for Solidago chilensis (Asteraceae). The content of the gastroprotective diterpene solidagenone as well as the phenolics chlorogenic acid (CA) and rutin was determined either in rhizomes from wild growing plants and in callus and in in vitro regenerated plantlets by analytical HPLC. Additionally, total phenolic and flavonoid content was assessed in plant samples, callus and cell suspensions. In terms of dry starting material, the percentual solidagenone content in nine S. chilensis samples ranged from $0.5-3.5 \%$ for rhizomes from wild growing plants, $0.1-0.3 \%$ for callus and 0.3% for an in vitro regenerated plantlet, respectively. The highest solidagenone contents were found in the wild plant during the late summer in the months of March and April (3.5$2.2 \%$) while highest values for chlorogenic acid (0.5%) and rutin (0.4%) were detected in May, before senescence. The callus tissue and cell suspensions contained some $1.8-2.0$ and 1.2% of total phenolics, respectively. CA was the main phenolic in the cell suspension while only traces were found in the callus. Rutin was not detected in the callus nor cell culture.

