Constituents of *Quinchamalium majus* with Potential Antitubercular Activity

Jian-Qiao Gua, Yuehong Wanga, Scott G. Franzblaub, Gloria Montenegroc, and Barbara N. Timmermanna,*

a Department of Pharmacology and Toxicology, Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Arizona, 1703 East Mabel St., Tucson, AZ 85721, USA. Fax: +1-520-626-2515. E-mail: btimmer@pharmacy.arizona.edu

b Institute for Tuberculosis Research (M/C 964), College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA

c Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile

* Author for correspondence and reprint requests

Z. Naturforsch. 59c, 797–802 (2004); received June 2/June 30, 2004

Antitubercular bioassay-guided fractionation of the dichloromethane extracts of the above-ground biomass and roots of *Quinchamalium majus* led to the identification of six known constituents, betulinic acid (1), daucosterol (2), 5,7-dihydroxyflavone (3), oleanolic acid (4), (−)-2S-pinocembrin (5), and ursolic acid (6), for the first time in this species. Their chemical structures were determined on the basis of spectroscopic evidence and chemical transformation methods. All of these compounds along with additional 11 analogues were evaluated for their antitubercular potential against *Mycobacterium tuberculosis* in a microplate alamar blue assay, and the primary structure-activity relationships (SARs) for 4 and 6 were discussed. In addition, all the isolates were tested for cytotoxicity against African green monkey Vero cells in order to evaluate for their selectivity potential.

Key words: *Quinchamalium majus*, Antitubercular Activity, Structure-Activity Relationship

Introduction

Quinchamalium majus Brong. (Santalaceae) is a short and twiggy perennial herb with a tuberous ligneous white root, fleshy linear and succulent leaves, and head inflorescences with yellow, orange or red flowers (Hoffmann et al., 1998). This species is indigenous to Chile where it grows on the sunny hillsides from the coast to high altitudes in the Andes Mountains. It also grows in Argentina, Bolivia, and Peru. Infusions of its aerial parts and roots are traditionally used in Chile for treating liver and stomach inflammations, cold, and fever (Montenegro, personal communication). Up to the present, very limited phytochemical and biological studies have been reported for this plant. The infusion of its aerial parts was found to exhibit the acetylcholine-like effect on isolated intestines, atria, and auricles of a guinea pig and/or a rabbit (Tampier de Jong, 1963) and only rutin was reported in 1973 by Horhammer et al. As part of a collaborative search for novel antitubercular principles of plants and microbial organisms from dryland biodiversity of Latin America (Timmermann et al., 1999), the dichloromethane-soluble extract of the above-ground biomass and roots of *Q. majus* exhibited an inhibitory effect on the growth of *Mycobacterium tuberculosis* H37Rv in a microplate alamar blue assay (MABA) system with a minimum inhibitory concentration (MIC) of 50 µg/ml. Fractionation of the extract led to the identification of six previously known compounds (Fig. 1). All of these constituents along with 11 additional analogues were evaluated for their antitubercular and cytotoxic activities as pure compounds, and the results are described herein.

Material and Methods

General experimental procedures

Melting points were determined using a Fisher-Scientific melting point apparatus and are uncorrected. Optical rotations were measured with a Jasco P-1010 polarimeter. CD measurements were performed using a Jasco J-810 CD spectropolarimeter, which was calibrated with a positive standard, ammonium d-10-camphorsulfonate. IR (as a film on a diamond cell) was obtained on a Thermo Nicolet Avatar 360 FT-IR spectrometer. EI-MS data were obtained with a Varian Saturn 2100T GC-MS Workstation including data system software (Version 5.2) interfaced to a 3900-GC, a
2000-MS detector, and a 1079-Injector. NMR spectra were recorded at room temperature on a Bruker Avance 300 NMR spectrometer in 5-mm NMR tubes with TMS as the internal standard. Standard pulse sequences were employed for the measurement of 2D NMR spectra (1H–1H COSY, HSQC, and HMBC). Column chromatography (CC) was conducted on silica gel (32–63 μm or 63–200 μm; Scientific Adsorbents Incorporated, Atlanta, Georgia, USA) and Sephadex LH-20 (Pharmacia Biotech, Uppsala, Sweden). Semi-preparative reversed-phase HPLC was performed on a Varian LC system equipped with two 215 Solvent Delivery Modules and a 320 UV-VIS Detector, using a Dynamax-100 Å C18 column (21.4 × 250 mm, 10 μm) (Varian, Lake Forest, California, USA). Semi-preparative normal-phase HPLC was carried out on a Varian LC system equipped with a 9012 Solvent Delivery System and a 9065 Polychrom detector, using a 10 × 250 mm, 10 μm Ecosphere CN column (Alltech, Deerfield, Illinois, USA). Analytical TLC was performed on Whatman Diamond K6F silica gel 60A (250 μm) and Merck RP-18 WF254S (200 μm) plates. Compounds were visualized on TLC plates by dipping in phosphomolybdic acid (Sigma-Aldrich, Milwaukee, Wisconsin, USA) or vanillin/sulfuric acid reagents followed by charring at 110 °C for 5–10 min.

Plant material

Aerial parts and roots of *Quinchamalium majus* were collected in February 2002 in Termas De Chillan, VIII Región, Chile (36° 54’ S; 71° 25’ W) by one of us (G.M.). A voucher specimen (No. 1097) has been deposited in the herbarium at the Pontificia Universidad Católica de Chile, Santiago, Chile. Intellectual Property Rights Agreements for plant collections and collaborative research have been fully executed between the University of Arizona and Pontificia Universidad Católica de Chile.

Extraction and isolation

The milled dried plant material (500 g) was extracted by maceration with MeOH (3 × 1.8 l). After filtration and evaporation of the solvent in vacuo, the resultant extract was diluted with H2O to afford a 90% aqueous MeOH solution (0.6 l) and then partitioned with n-hexane (3 × 0.6 l) and CH2Cl2/H2O (1:1 v/v, 2 × 1 l), sequentially, to afford dried n-hexane-soluble (8.5 g) and CH2Cl2-soluble (3.5 g) residues. The CH2Cl2 extract was found to inhibit the growth of *M. tuberculosis* at a MIC value of 50 μg/ml while the n-hexane extract was inactive. Therefore, the CH2Cl2 extract (3.5 g) was subjected to silica gel CC (200 g, 63–200 μm) by elution with a step gradient of CH2Cl2/MeOH (100:0, 75:1, 40:1, 20:1, 10:1, 0:100 v/v, each 1 l) to give six fractions (1–6), respectively. Fractions 2 and 3 were combined on the basis of their similar TLC profiles and the pooled fraction (520 mg) was applied to CC (SiO2, 52 g, 63–200 μm) by elution of n-hexane/EtOAc (8:1, 7:1, 6.5:1, 6:1, 1:1 v/v, each 1 l) to afford five further fractions 2–1 to 2–5. (–)-2S-Pinocembrin (5, 3 mg) was obtained from fr. 2–2 (45 mg) by CC over Sephadex LH-20/MeOH. Purification of fr. 2–3 (60 mg) by HPLC (CN column, n-hexane/isopropanol/methanol 97.5:1.5:1.5 v/v, 4 ml/min, 200 nm) afforded betulinic acid (1, 15 mg; tR = 13.9 min). Fractionation of fr. 2–5 (0.9 g) over CC (SiO2, 100 g, 63–200 μm) gave a further fraction (95 mg, CH2Cl2/MeOH/H2O 15:1:0.1 v/v, 2 l), which was purified over Sephadex LH-20/MeOH to afford daucosterol (2, 60 mg). In turn, fractionation of fr. 2–4 (70 mg) by CC over Sephadex LH-20/MeOH afforded 5,7-dihydroxyflavone (3, 6 mg) and a further mixture fraction 2–4–1 (34 mg), which could not be separated by HPLC using Ecosphere CN, NH2, SiO2, and C18 columns (Alltech, Deerfield, Illinois, USA). Therefore, this mixture was treated as described below to achieve separation and identification of its components.

1H and 13C NMR analysis of fraction 2–4–1 indicated that it was a mixture of triterpenoids containing hydroxyl group(s). After treatment with pyridine (0.8 ml) and acetic anhydride (0.3 ml) overnight, the resultant mixture (36 mg) still could not be separated with the above-mentioned HPLC methods. Next, the dried acetylated mixture was further treated with an excess of diazomethane in methanol (O'Neil et al., 2001) and a further mixture fraction 2–4–1 (34 mg), which could not be separated by HPLC using Ecosphere CN, NH2, SiO2, and C18 columns (Alltech, Deerfield, Illinois, USA). Therefore, this mixture was treated as described below to achieve separation and identification of its components.

A portion of 6b (12 mg) was sequentially treated with 3 ml of 2% NaOH in MeOH overnight, 3 ml of 2 N HCl for neutralization, and partitioned with...
M.p. 293 (3 × 10 ml) to give 6c [7.5 mg; m.p. 112–114 °C; [α]20 D + 58° (c 0.1, CHCl3)] (Seo et al., 1981), which was identical to the product generated from commercially purchased ursoic acid (6) after treatment with an excess of diazomethane. In addition, 6a [8 mg; m.p. 287–289 °C; [α]20 D + 71° (c 0.1, CHCl3)] (O’Neil et al., 2001) was prepared from 6 (8.2 mg) by routine treatment with C5H5N/Ac2O addition, after treatment with an excess of diazomethane. In turn, commercially purchased oleanolic acid (4, 10 mg) was treated with CH2N2 for the biological testing.

Identification

Betulinic acid (1): White amorphous powder. – M.p. 293–295 °C. – [α]20 D + 9.4° (c 0.1, CHCl3/MeOH 1:1). – IR, 1H NMR, and 13C NMR data were identical to those of the authentic standard (Sigma-Aldrich) and the reported values (Siddiqui et al., 1988).

Daucosterol (2): White amorphous powder. – M.p. 294–296 °C (dec.). – [α]20 D + 41° (c 0.1, pyridine). – IR, 1H NMR and 13C NMR data were identical to the reported values (Faizi et al., 2001).

5,7-Dihydroxyflavone (3): Pale yellow powder. – M.p. 288–290 °C. EI-MS: m/z = 254 (100) [M]+, 226 (38), 152 (15), 124 (18), 96 (8). – 1H NMR and 13C NMR data were in agreement with reported values (Wagner et al., 1976).

(-)-2S-Pinocebrin (5): Amorphous powder. – M.p. 195–197 °C. – [α]20 D − 56° (c 0.1, CHCl3/MeOH 10:1). – CD (c 0.001, CHCl3/MeOH 10:1): Δε289 = 4.77 mm (Gaffield, 1970). – EI-MS m/z: 256 (100) [M]+, 238 (21), 179 (68), 152 (50), 124 (57), 103 (17). – 1H NMR and 13C NMR data were identical to those of the authentic standard (Sigma-Aldrich) and the reported values (Tanaka et al., 1985).

Microplate alamar blue assay

Antimycobacterial activity was determined against *Mycobacterium tuberculosis* H37Rv (ATCC 27294) in a microplate alamar blue assay system as described previously by Collins and Franzblau (1997). The minimum inhibitory concentration (MIC) value of < 128 µg/ml was considered as active. The antitubercular drug rifampin was used as a positive control.

Cytotoxicity assay

Evaluation of cytotoxicity of the CH2Cl2-soluble extract and pure compounds was performed as a modification of an established protocol (Cantrell et al., 1996). In brief, test compounds were dissolved at 10–40 mg/ml in DMSO. Geometric three-fold dilutions were performed in growth medium M199 (Gibco, Grand Island, NY, USA) to which 5% fetal bovine serum was added (HyClone, Logan, UT, USA), 25 mm N-(2-hydroxyethyl)-piperazine-N’2-ethanesulfonic acid (HEPES; Gibco), 0.2% NaHCO3 (Gibco) and 2 mm glutamine (Irvine Scientific, Santa Ana, CA, USA) to obtain final concentrations ranging from 0.42 to 102.4 µg/ml. Final DMSO concentrations did not exceed 1% v/v. Samples were distributed in duplicate in 96-well tissue culture plates (Becton Dickinson Labware, Lincoln Park, NJ, USA) at a volume of 50 µl/well. An equal volume containing 5 × 103 log phase Vero cells (CCL-81; American Type Culture Collection, Rockville, MD, USA) were added to each well, and the cultures were incubated at 37 °C in an atmosphere of 5% CO2 in air. After 72 h, cell viability was measured using the CellTiter 96 aqueous nonradioactive cell proliferation assay (Promega Corp., Madison, WI, USA) according to the manufacturer’s instructions. Absorbance at 490 nm was read in a BioRad Model 3550 microplate reader (Hercules, CA, USA). The IC50 value is defined as the reciprocal dilution resulting in 50% inhibition of the Vero cells. In addition, selective index (SI = IC50/MIC) values were determined.

Results and Discussion

Six compounds of previously known structures were identified as betulinic acid (1), daucosterol (2), 5,7-dihydroxyflavone (3), oleanolic acid (4), (-)-25-pinocembrin (5), and ursoic acid (6) (Fig. 1) for the first time from the dichloromethane-soluble extract of the above-ground biomass and roots of *Q. majus*, as described in Material and Methods. Among these constituents, the presence of 4 and 6 was confirmed by observation of their respective acetyl and/or methyl derivatives (4a, 4b, 6b, 6c), which were identified by comparison of their physical and 1H NMR data with reported values. Six related triterpenoids, α-amyrone (10), α-amyrin (8), β-amyrone (9), β-amyrin (7), oleanolic acid
800 J.-Q. Gu et al. · Constituents of Quinchamalium

Fig. 1. Chemical structures of constituents of Q. majus and their related analogues.

(4), and ursolic acid (6) were purchased from Sigma-Aldrich to allow for comparison of antitubercular activities.

All of the isolates obtained from Q. majus along with 11 analogues were evaluated for their potential to inhibit the growth of M. tuberculosis and African green monkey Vero cells, respectively, according to established protocols (Collins and Franzblau, 1997; Cantrell et al., 1996). The results (Table I) showed that three common triterpenes, betulinic acid (1), oleanolic acid (4) and ursolic acid (6), along with the flavanone 5 exhibited significant inhibitory activity in a microplate alamar blue assay with MIC values of 62, 30, 31, and 90 µg/ml, respectively, while the other two isolates 2 and 3 were inactive (MIC > 128 µg/ml).

It was observed that a reduction of the carboxylic acid group in compounds 4 and 6 to the corresponding methyl group resulted in the complete loss of activity even though the 3β-hydroxy group was not modified as in 7 and 8 or was oxidized to a ketone group as in 9 and 10. In addition, the complete loss of activity as in 4b and 6b was also observed for both 4 and 6 if the 3β-hydroxy and carboxylic acid groups were simultaneously changed to the corresponding acetate and methyl ester, respectively. However, modification of only the carboxylic acid of 4 to its corresponding methyl ester (4c) retained the antitubercular activity in the same order of magnitude while the cytotoxicity against Vero cells was enhanced ca. threefold. Replacement of only the 3β-hydroxy group of 4 to its corresponding acetate (4a) resulted in a remarkable reduction of the antitubercular activity. In contrast to the observations with compound 4, methyl ursolate (6c) decreased the antitubercular activity twofold and enhanced the cytotoxicity somewhat when compared to 6. More interestingly, modification of the 3β-hydroxy group of 6 to the corresponding acetate (6a) reduced the cytotoxicity about three times while still keeping the same antitubercular activity.

The results of this study support our previous observations of the structure-activity relationships for pentacyclic triterpenoids (Wachter et al., 1999), in that the presence of a hydroxy group in the A ring combined with the presence of a carboxylic acid or its methyl ester group in the E ring of triterpenes 4 and 6 is associated with the observed antitubercular activity. In addition, as demonstrated for 6 and 6a, semi-synthesis of lead compounds of interest could provide more interesting analogues with improved selectivity indices, which could also exhibit lower cytotoxicity while conserving the same activity. Furthermore, it is worthy to point out that after reviewing the phytochemical and biological data from our laboratory, fractionation of several initially active plant-derived extracts often led to the isolation of common triterpenoids with only a moderate activity such as betulinic acid, oleanolic acid, ursolic acid, and their epo-isomers (Wachter et al., 1999; Caldwell et al., 2000; Cantrell et al., 2001; Gu et al., 2004; Woldemichael et al., 2004). Therefore, it has become necessary to develop a methodology
Table I. Growth inhibition of *M. tuberculosis* and green monkey Vero cells by constituents of *Q. majus* and related analogues.

<table>
<thead>
<tr>
<th>Compound</th>
<th>MIC [µg/ml]</th>
<th>IC<sub>50</sub> [µg/ml]</th>
<th>IC<sub>S0</sub> [µM]</th>
<th>SI<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifampin<sup>b</sup></td>
<td>0.03</td>
<td>98</td>
<td>119</td>
<td>3277</td>
</tr>
<tr>
<td>Betulinic acid (1)<sup>c</sup></td>
<td>62</td>
<td>79</td>
<td>173</td>
<td>1.3</td>
</tr>
<tr>
<td>Daucosterol (2)</td>
<td>> 128</td>
<td>> 102</td>
<td>> 137</td>
<td>n.c.<sup>d</sup></td>
</tr>
<tr>
<td>Daucosterol tetraacetate (2a)</td>
<td>> 128</td>
<td>> 102</td>
<td>> 137</td>
<td>n.c.<sup>d</sup></td>
</tr>
<tr>
<td>5,7-Dihydroxyflavone (3)</td>
<td>> 128</td>
<td>84</td>
<td>331</td>
<td>n.c.<sup>d</sup></td>
</tr>
<tr>
<td>Oleanolic acid (4)<sup>c</sup></td>
<td>30</td>
<td>83</td>
<td>182</td>
<td>2.8</td>
</tr>
<tr>
<td>3-O-Acetyloleanolic acid (4a)</td>
<td>113</td>
<td>> 102</td>
<td>> 205</td>
<td>n.c.<sup>d</sup></td>
</tr>
<tr>
<td>Methyl-3β-acetoxyolean-12-en-28-oate (4b)</td>
<td>> 128</td>
<td>> 102</td>
<td>> 199</td>
<td>n.c.<sup>d</sup></td>
</tr>
<tr>
<td>(-)-2S-Pinocembrin (5)</td>
<td>90</td>
<td>30</td>
<td>117</td>
<td>0.3</td>
</tr>
<tr>
<td>Ursolic acid (6)<sup>c</sup></td>
<td>31</td>
<td>37</td>
<td>81</td>
<td>1.2</td>
</tr>
<tr>
<td>3-O-Acetylursolic acid (6a)</td>
<td>31</td>
<td>> 102</td>
<td>> 205</td>
<td>> 3.3</td>
</tr>
<tr>
<td>Methyl-3β-acetoxyurs-12-en-28-oate (6b)</td>
<td>> 128</td>
<td>> 102</td>
<td>> 199</td>
<td>n.c.<sup>d</sup></td>
</tr>
<tr>
<td>Methyl ursolate (6c)</td>
<td>63</td>
<td>25</td>
<td>53</td>
<td>0.4</td>
</tr>
<tr>
<td>β-Amyrin (7)</td>
<td>> 128</td>
<td>> 102</td>
<td>> 239</td>
<td>n.c.<sup>d</sup></td>
</tr>
<tr>
<td>α-Amyrin (8)</td>
<td>> 128</td>
<td>> 102</td>
<td>> 239</td>
<td>n.c.<sup>d</sup></td>
</tr>
<tr>
<td>β-Amyrenone (9)</td>
<td>> 128</td>
<td>> 102</td>
<td>> 241</td>
<td>n.c.<sup>d</sup></td>
</tr>
<tr>
<td>α-Amyrenone (10)</td>
<td>> 128</td>
<td>> 102</td>
<td>> 241</td>
<td>n.c.<sup>d</sup></td>
</tr>
</tbody>
</table>

^a Selectivity index (SI = IC₅₀/MIC, in which both IC₅₀ and MIC values are expressed in µg/ml).

^b Positive control.

^c Retested and included in the table for comparison of activities.

^d Not calculated.

for dereplication of the most commonly found triterpenoids in initially active plant extracts in order to facilitate the search for novel antitubercular agents.

Acknowledgement

The authors are thankful to Dr. Xu-Yuan Gu, Department of Chemistry, University of Arizona for measuring the specific rotations. This investigation was supported by the ICBG “Bioactive Agents from Dryland Biodiversity of Latin America” grant 5 U01 TW000316–10 and 3 U01 TW000316–10S1 from the National Institutes of Health (NIH), the National Science Foundation (NSF) and the US Department of Agriculture (USDA) to B. N. T. The contents are solely the responsibilities of the authors and do not necessarily represent the official views of NIH, NSF or USDA.

