Contribution of Disulfide Bonds and Calcium to Molluscan Hemocyanin Stability

Dessislava N. Georgieva*a,b,*, Nicolay Genovb, Markus Perbandtc,a, Wolfgang Voelterd, and Christian Betzel*a

a Universitätsklinikum Hamburg-Eppendorf, Zentrum für Experimentelle Medizin, Institut für Biochemie und Molekularbiologie I, c/o DESY, Notkestr. 85, Geb. 22a, D-22603 Hamburg, Germany. Fax: (040) 89984747. E-mail: Georgieva@unisgi1.desy.de

b Institute of Organic Chemistry, Bulgarian Academy of Sciences, Akad. G. Bonchev str. Bl. 9, Sofia 1113, Bulgaria

c Institut für Biochemie und Lebensmittelchemie, Abteilung für Biochemie und Molekularbiologie, D-20146 Hamburg, Germany

d Abteilung für Physikalische Biochemie, Physiologisch-chemisches Institut der Universität Tübingen, Hoppe-Seyler-Straße 4, D-72076 Tübingen, Germany

* Author for correspondence and reprint requests

Z. Naturforsch. 59c, 281–287 (2004); received November 19/December 18, 2003

Disulfide bonds and calcium ions contribute significantly to the stability of the hemocyanin from the mollusc Rapana thomaisana grosse (gastropod). An extremely powerful protective effect of Ca2+ at a concentration of 100 mM (100% protection) against the destructive effect of reductants like dithiothreitol was observed. This is important for the practical application of molluscan hemocyanins in experimental biochemistry, immunology and medicine. The reduction of the disulfide bonds in the Rapana hemocyanin leads to a 20% decrease of the α-helical structure. The S-S bonds contribute significantly to the free energy of stabilization in water increasing ΔG_{D→H2O} by 6.9 kJ mol⁻¹. The data are related to the X-ray model of the Rapana hemocyanin functional unit RTH2e. The results of this study can be of common validity for related respiratory proteins because the cysteine residues are conserved in all sequences of molluscan hemocyanins published so far.

Key words: Hemocyanin, Rapana thomaisana, Disulfide