Effects of a Switched Weak Magnetic Field on Lecithin Liposomes, Investigated by Nonlinear Dielectric Spectroscopy

Alexander Pazur
Department Biologie 1 Universität München – Bereich Botanik, Menzingerstr. 67, D-80638 München. Fax: 089-17861-185. E-Mail: pazur@botanik.biologie.uni-muenchen.de
Z. Naturforsch. 58c, 386–394 (2003); received December 5, 2002/January 10, 2003

Three types of liposomes in aqueous solution were subjected to a low frequency switched weak magnetic field. A differential non-linear dielectric spectroscopy (DNLDS) was performed at 40 °C with two planar orthogonal electrodes, positioned parallel and vertical to the earth surface. The difference of the free voltage release (FVR) signals for the two orthogonal directions following electric pulses with an amplitude of 1.0 V and a duration of 25 ms, were Fourier-transformed. An additional magnetic field was switched with a period of 400 ms and a variable amplitude from 0 to 100 G, whose direction was parallel to the vertical electrode plane. With two of the liposomes (egg yolk lecithin (EY), asolectin doped with cholesterol (ASCO)) a decrease of the signal amplitude with increasing magnetic fields could be seen in most of the 25 observed harmonic frequencies (relative to the electric pulse frequency f(0) = 40 Hz). For EY liposomes this decrease was highly significant and not linear for the 1.–5., and above the 20. harmonic frequency, ASCO liposomes showed a similar effect. Asolectin liposomes showed the reverse response. Quantum mechanical conditions of charges on the liposome surface are discussed as a possible origin of these effects.

Key words: Liposome, Biological Magnetic Field Effect, Nonlinear Dielectric Spectroscopy (NLDS)

Introduction

The investigation of biological effects caused by magnetic fields and non-ionizing electromagnetic radiation probably began in the late 19th century in Russia (mentioned by Zhadin, 2001). While in the early studies natural sources like the earth’s magnetic field were in the focus of interest, more recent ones were aimed to recognize potential human health risks by man-made environmental factors (WHO, 1984; WHO, 1987). On the other hand, a potential was predicted and partially found for medical diagnostic and therapy by the use of specific magnetic fields and low frequency electromagnetic radiation. Examples were reported for orthopedics (Darendeliler et al., 1997), neurology (Crasson et al., 1999), and cancer research (Chakkalakal et al., 1999).

Three physical mechanisms have been discussed, underlying biological effects of weak (< 1000 G) magnetic fields: the presence of ferromagnetic particles, chemical reactions modulated by singlet-triplet mixing of radical pairs, and the ion cyclotron resonance (ICR). Ferromagnetic mechanisms where mainly investigated in microorganisms (Torres de Araujo et al., 1986), they are understood by mechanical action of the particles on the host cell. They have also been invoked for the “compass mechanism” e.g. of migration birds (Deutschlander et al., 1999; Wiltshko et al., 2000). The fundamentals of the “radical pair mechanism”, involving the modulation of singlet-triplet interconversion rates by weak fields, were studied on photosynthetic reaction centers and the respiratory chain (Rademaker et al., 1980; Ogorodnik et al., 1982; Waliszewski et al., 1999). This effect has also been proposed as the origin of magnetic orientation in several animals, where the receptors are linked to the visual system. Magnetically induced cyclotron resonances of ions in aqueous solutions, which can shift the equilibrium of biochemical reactions in presence of weak static magnetic fields, are suggested by Liboff (1997) and
Adair (1997), who estimate field strengths of some Gauss and correlating frequencies for this mechanism. Smith et al. (1995) investigated ICRs for Ca²⁺, K⁺ and Mg²⁺ by germination experiments with radishes in suitable alternating weak magnetic fields. Zhadin et al. (1998) found an increasing ionic current at the ICR condition of a glutamic acid solution, applying combined static and alternating magnetic fields at intensities of some µT.

There is increasing evidence for the involvement of membranes, in combination with one or several of the above mentioned mechanisms. A mechanism was proposed by Yee et al. (1994), in which, nearby the transition temperature T_c, different phase states of a lipid mixture can coexist, caused by large concentration gradients. Ramundo-Orlando et al. (2000a, b) investigated the involvement of charged lipids and carbonic anhydrase, a peripheral enzyme, in dipalmitoyl-phosphatidilcholine liposomes exposed to ELF fields. At 7 Hz, an increased permeability was observed, for liposomes containing stearylamine. An increased permeability of cell membranes of barley seeds is reported by Khizhenkov et al. (2001) during soaking with Pb²⁺, Ba²⁺, Na⁺, K⁺ under the action of ELF fields in the range < 1 G. In summary, these data indicate that membranes are involved in biological magnetic field effects, probably relating to singlet-triplet mixing, or ICR mechanisms.

In the present work results are reported, which show changes of dielectric properties of liposomes with different lipid compositions above the transition temperature, when a low frequency switched magnetic field of relative low intensity (≤ 100 G) is applied.

Materials and Methods

Liposome preparation

Three types of liposomes were prepared: (a) from egg yolk lecithin (EY, Merck 1.05331.0100), (b) soybean lecithin (AS asolectin, Fluka 11145), and (c) an asolectin cholesterol (10% w/w) mixture (ASCO, cholesterol from Sigma C8667). The lecithins were prepurified by washing them twice with acetone, drying in a vacuum desiccator, and storage under argon for further use. Molecular properties, chain lengths, and a mean mol weight of 734.1 were assumed as in Bultmann et al. (1991). The suitable buffer used in all experiments was that of Matsuzaki (2000), containing NaCl (150 mm), Trishydroxymethyl-aminomethane (10 mm), EDTA (1 mm) adjusted with HCl to pH 7.0. It was degassed and stored under an argon atmosphere, to reduce lipid oxidation. The lipids were dissolved in chloroform and transferred into test tubes for sonication, yielding a final concentration of 0.5% w/w lecithins. After quick evaporation of the solvent by flushing with argon, 40 ml buffer were added, and the mixture shaken by hand for 30 s in order to mix the components without using solvents or detergents, as described by Christopher et al. (1984), and Collins (1995). The emulsion was sonified for 20 min. (Branson Sonifier W-450, 50% power, 50% duty cycle, at 20°C), comparable with the treatment suggested by Levchuk et al. (1983) for preparing unilamellar liposomes. The obtained stock probes were centrifuged (2000 x g, at 4°C) for 2 min to remove titanium abrasions from the tip caused by the ultrasonication. The supernatants were stored at +4°C in the dark under argon, and could be used for up to one week. Mean liposome sizes were estimated by the right angle light scattering method of Matsuzaki et al. (2000) using a spectrofluorimeter (Spex Fluorolog 1680, Spex Industries, Munich).

Measurement principle

The NLDS technique was developed during the past decade with the aim of obtaining size-, shape- and surface-information for cells and smaller particles in aqueous solutions, by using a relatively simple electrochemical measuring apparatus. In the simplest case, a sinusoidal alternating electric field is applied to the solution by 2 electrodes, using peak to peak voltages of 0.5–1.5 V and frequencies of 1 to 1000 Hz. Particles with a relative dielectric constant different from that of their environment (pure water: $\varepsilon_r = 80.8$) distort the field, thereby inducing alternating voltages over and currents through the solution, which are detected by 2 auxiliary electrodes in order to avoid polarization effects. The distortions of the obtained signals contain the underlying spectral information. Therefore the signals are Fourier-transformed and evaluated as spectra in the frequency domain (see McShea et al., 1992, Woodward et al., 1996; 2000).

The general behavior of particles in an electric field E, is illustrated in Fig. 1, where measurement
Fig. 1. The behavior of liposomes (and other particles with a dielectric surface) in an electric field E, and orientation of the perpendicular electrodes D, each at 45° against the direction of the electric field E.
1) Liposomes of uncharged lipids: Polarizing effect of E induces dipoles with opposite orientation as E (shown in all 6 examples by thin + and − signs). This induced dipoles distort the external potential with a specimen-characteristic time constant. The resulting NLDS signals of electrodes in the two perpendicular planes D have equal amplitudes with opposite (180°) phases, which cancel upon subtraction.

2–3) Liposomes with a uniform positive (2) or negative (3) surface charge (bold symbols) additionaly move in the electric field up or down, on account of their net-charges. These signals vanish too upon subtraction, because their phases are also shifted by 180°. All other charge distributions generate dipole-moments, which cause direction dependent potential changes and yield a non-zero difference signal for the two monitoring directions D.

4) Fixed but unequal distributed surface charges effect rotation of the particle.
5–6) A fluid lipid matrix allows moving and turning around of charged molecules in the membrane plane.

is done with 2 pairs of electrodes (D) inclined by ± 45° against the direction of the electric field E.

Apparatus

In the present work, the “standard” NLDS experimental setup was modified: Fig. 2 shows schematically the DNLDS (differential non linear dielectric spectroscopy) setup with planes at right angle, each with 4 single platinum electrodes. Several reports focus on finding proper electrode materials and their pre-treatment for good electric long-term stability (Woodward et al., 1996; Yardley et al., 2000). Cleaning with chloroform is followed by ultrasonication in a detergent solution (0.5% Triton X-100), washings with CaCl₂ (0.5 m in water) and finally deionized water (< 2 µS) resulted in acceptable signal stability (deviation of corresponding amplitudes ≤ 5%) over an experimental session of up to 2 h. Always two adjacent outer electrodes were connected with one of the 2 outputs of a differential signal driver. Small mechanical differences of the two electrode planes were electrically compensated in order to obtain equal electric field strengths for both directions. This arrangement leads to a more homogeneous E field then a simple application with 2 perpendicular electrodes, each at 45° to the inner signal detection electrodes. Furthermore it will allow the use of a rotating quadrupole field in future investigations. Each pair of the inner electrodes was connected to one of two differential preamplifiers, whose output signals could be balanced by a potentiometer. Acquisition, digitalization, Fourier transformation and storage of the data was performed by a Pentium computer equipped with a DA/AD-converter board (Lab-PC+, National Instruments, Austin TX U.S. A.). The magnetic field was applied perpendicular to the electrodes by a suitably controled solenoid (Pazur, 2001).

The probe volume of 5 ml with the electrodes immersed, was kept at a constant temperature of 40 ± 0.2 °C by a water thermostat, ensuring that lipid phases were safely above their transition temperatures (Bultmann et al., 1991). This was ascertained by the results of DNLDS measurements at several temperatures: Reproducible changes of the
spectra were observed, when traversing the temperature ranges were the transition temperatures were expected. Electrode polarisation effects and sedimentation of the liposomes were minimized by a short pneumatic mixing (0.5 ml/1 s) of the probe by an electronically controlled pipettemechanism, before each individual measurements.

Applied signals

The signal timing diagrams are shown in Fig. 3 (A–D). The total recording time for one spectrum is 400 ms. (A) shows the magnetic signal, which is present during the whole 400 ms time window, changes its polarity after 200 ms, and whose intensity can be varied from 0–100 G. In order to excite a broad frequency range for the DNLDS, rectangular electrical pulses (1 V) were applied with changing polarity, lasting 25 ms each, beginning at every half-time of the measuring period (B). The acquisition time (C) begins directly after the end of the half pulses and lasts to the end of the respective half-time (25–200 and 225–400 ms). In this time the FVR (free voltage release) is sampled, caused by the recombination of the induced dipoles. In case of a liposome-free conducting aqueous solution (buffer), the difference signal from the two orthogonal electrode pairs could be adjusted to zero. Introduction of liposomes resulted in decay signals like the ones schematically indicated in (D). The magnetic field switching was obtained by reversing the polarity after 200 ms, in phase with the reversal of the electric pulses. A complete experiment consisted of 101 spectra, during which the amplitude of the switched magnetic field was increased for every successive spectrum by ±1 G from 0 to ±100 G (0–10 mT). The pulse integral \(\Phi \) for one individual measurement of 400 ms duration at the maximum field strength of 100 G is

\[
\Phi = B \cdot t = 100 \, \text{G} \cdot 0.4 \, \text{s} = 40 \, \text{Gs}. \tag{1}
\]

Reference experiments were executed identically, but without applying the magnetic field.

Results

The liposome solution could be introduced and withdrawn with a fixed syringe. This allowed for fast filling and rinsing of the unit, and replacement of the probes, without disassembling and need of new adjustment exactly to the center of the magnetic coil, for which the magnetic field strengths were appointed. Measurements were started after reaching the probe temperature of +40 °C for at least 2 min by performing 10 spectral “dummy” scans without data acquisition to bring the electrodes to a stable dynamic equilibrium, then the actual experiment began. Every experiment was performed with a new probe. Control experiments with “used probes” showed an average activity loss with regard to magnetic field effects of 20% during the experiment.

Table I gives an overview of the experimental results, sorted by types of liposomes used. Each row belongs to one liposome or experiment type,
each column denotes one property. The total numbers of experiments were 27 (EY), 16 (AS), and 10 (ASCO) with a magnetic field, and 20 (EY), 15 (AS), and 10 (ASCO) without magnetic field (controls). Liposome radii and transition temperatures were investigated with 5 separate preparations each. By a 90° light scattering, EY liposomes show the largest size \(r = 83.5 \text{ nm} \) at 40°C. AS liposomes are the smallest \(r = 76.0 \text{ nm} \), and ASCO liposomes were intermediate \(r = 80.5 \text{ nm} \).

The transition temperatures of the liposomes were studied using the DNLDS apparatus. The DNLDS spectra are generally smooth and reproducible over a large temperature range. However near the phase transition they show more or less chaotic signals in narrow temperature regions. These transition temperatures are shown in the Table I. A refinement of these methods will be the subject of further investigations.

The signals obtained by the FVR (see Fig. 3D) were Fourier transformed to yield the power (amplitude) spectra. Their abscissas were scaled in multiples of the base frequency \(f(0) = 40 \text{ Hz} \) (“orders” or “harmonic wave numbers” with respect to the electric pulse width of 25 ms, see Fig. 3B) for all further considerations. The absolute voltage amplitudes of the first order signals are shown for all liposome types in the 5th column of Table I. Under same conditions, all three liposome types show different DNLDS amplitudes. So it will be useful to normalize the data for comparison.

Fig. 4A shows the averaged spectra for 0 (dark line) and 100 G (grey dotted line) magnetic field intensity, averaged over all 27 experiments with EY liposomes. Up to the 7th order the signal is significantly reduced in the presence of the magnetic field. The ratio of the two spectra (Fig. 4B) further reveals, that their is a net decrease of only 25% in the middle frequency range (10. to 18. order) and a larger one for higher orders of \(f(0) \), although the latter is not as pronounced as the one at the low frequency end of the spectrum. The residual signals were calculated after subtraction of the expected baselines. This baseline was obtained

Table I. Summary of experimental data: The first two columns show kind and number of experiments.

| Liposome experiment type | No. of experiments | \(| r \) (nm) at 40°C | \(t_c \) (°C) | Voltage of first order DNLDS signal at start: \(U \) (mV) | linear regression of first order in% of start value: \(y = r \cdot x + \text{constant} \) |
|-------------------------|--------------------|----------------------|----------------|---|---|
| EY (with magnetic field) | 27 | 83.5 ± 1 | 29.5 ± 0.25 | 12.03 ± 0.54 | − 0.32 \cdot x + 86.9 |
| EY (reference) | 20 | | | 11.85 ± 0.49 | + 0.003 \cdot x + 99.9 |
| AS (with magnetic field) | 16 | 76.0 ± 1 | 33.5 ± 0.25 | 7.11 ± 0.42 | + 0.15 \cdot x + 100.7 |
| AS (reference) | 15 | | | 7.03 ± 0.40 | − 0.010 \cdot x + 101.4 |
| ASCO (with magnetic field)| 10 | 80.5 ± 1 | 31 ± 0.25 | 9.39 ± 0.50 | − 0.16 \cdot x + 97.5 |
| ASCO (reference) | 10 | | | 9.01 ± 0.64 | − 0.008 \cdot x + 101.2 |

1) Liposome radii were obtained by right angle light scattering.
2) \(t_c \) was obtained by DNLDS scans with stepwise increased temperatures (see “Materials and Methods”).

The data in the column 5 shows the averaged signal voltages of the experiments for the first harmonic wave (order) at the beginning. The linear regressions of the normalized (start = 100%) growth of the first order signals are shown right. The experiments with applied magnetic field are grey shaded. The linear regression in column 6 is expressed as usual by the gradient factor \(r \) and a constant, \(x \) is the magnetic field strength protracted on the abscissa (x-axis).
Fig. 4. A) The Fourier spectra from the DNLDS experiments with EY liposomes for 0 (black solid line) and 100 G magnetic field strength (grey dotted line). The X-scale is shown in multiples of \(f(0) \), where \(f(0) \) means the zero order frequency (40 Hz, resp. 25 ms) of the electric signal. The magnetic field impact causes a steeper decrease in some frequency ranges.

B) The distinction of the spectra for magnetic field strengths of \(B = 0 \) and 100 G, can be shown in detail by dividing the 100 G spectrum \((U_{100\text{G}})\) by the 0 G spectrum \((U_{0\text{G}})\). The ratio spectra are independent of the decreased intensities at increasing frequencies, due to the negative exponential \((e^{-x})\) decay of the amplitudes with rising frequency \((x\text{-axis})\). Local depressions are seen in the ranges about 4 and 23·\(f(0) \).

C) The residual signals after subtraction of the expected baselines (calculated by a curve fit for a \(e^{-x} \) function) of the spectra show the intensity deviation for discrete frequencies, compared with the spectrum of a pure squarewave signal (line styles like in diagram A): Lower intensities will be seen for frequencies < 5·\(f(0) \) for the spectra at 100 G. At frequencies > 15·\(f(0) \) the signal shows here also increased variations in several frequency ranges.

Fig. 5 shows the intensity changes of the 1st orders of the DNLDS spectra with increasing magnetic field. The ordinate is normalized to the intensities at zero field. EY liposomes showed a strong decrease already at low magnetic field strengths, a slight increase between 50 and 75 G, and a final decrease to slightly more than 50% of the maximum intensity at zero field. AS liposomes showed a reverse field effect with a much smaller amplitude. The 1st order DNLDS signal rises monotonously by 15%. ASCO liposomes, which were doped with cholesterol, gave a decreasing signal, similar to the EY liposomes, but with a final less significant descent by only about 20%. The reference experiments without magnetic field showed no significant intensity changes. The relatively low standard deviations are indicated by the vertical bars for the experiments with EY liposomes. The right column of Table I shows additionally the linear regressions for the 1st order DNLDS signals, normalized to the corresponding value of the 1st spectrum of the experiments.

Discussion

The results provide evidence, that weak magnetic fields (< 100 G) and the magnetic components of ELF electromagnetic signals, have an effect on the electric properties of pure lipid membranes. Some recent studies have focused on natural membranes with frequency resolving measurement techniques like NLDS, whereby weak magnetic fields were applied before or during the measurements. Santini et al. (1995) reports a decrease of the electric conductivity and permittivity of K562 cells obtained by relaxation measurements considerably after exposure to ELF fields (50 Hz, 2.5 mT), whereas the conductivity of the
cytosol does not vary. Davies et al. (2000) found a strong nonlinear dielectric response of Dictyostelium discoideum cells after exposure to a pulsed magnetic field. We have previously reported a modified dielectric relaxation spectrum of undoped planar lipid membranes after exposure to weak magnetic pulses (Pazur, 2001). Here magnetic field effect was obviously caused by the pure lipid bilayer. In the following an estimation will be tried of membrane surface charge densities and their shifted energy levels by the magnetic field.

We make the following assumptions for our system:
- sphaerical, unilamelar liposomes with radius \(r_l = 8.35 \times 10^{-8} \text{ m} \) (corresponding to EY liposomes, Table I)
- membrane thickness \(d = 6 \text{ nm} \)

Right angle light scattering bases on total reflexion of the light, when passing from the optical denser to thinner medium at small incident angles. The liposome radii determined by this method should therefore represent those of the hydrophobic region of the membrane, with the largest refractive index difference at \(d/2 \). The liposome volume \(V_l \), the “wall” volume \(V_w \), and the outer surface \(A_l \) are given by:

\[
V_l = \frac{4}{3} \pi \left(r_l + \frac{d}{2} \right)^3
\]

(2)

\[
V_w = \frac{4}{3} \pi \left[\left(r_l + \frac{d}{2} \right)^3 - \left(r_l - \frac{d}{2} \right)^3 \right]
\]

(3)

\[
A_l = 4 \pi \left(r_l + \frac{d}{2} \right)^2
\]

(4)

The resulting values for EY liposomes are summarized in Table II, together with the derived values for the number of liposomes per ml, their average center-to-center distances, and their partial volumes. On the other hand, we calculate the electric field strengths \(E_0 \) during the electric pulse (\(U_0 = 1 \text{ V} \)), and \(E_i \) at the beginning of the FVR (\(U_i \approx 12 \text{ mV} \)), between the electrodes:

For the outer and inner electrode distances (\(d_o = 5 \text{ and } d_i = 2.5 \text{ mm} \), respectively), the ratio of the respective fields is:

\[
\frac{E_i}{E_0} = \frac{U_0/d_i}{U_0/d_o} = \frac{0.012 \text{ V}/0.0025 \text{ m}}{1 \text{ V}/0.005 \text{ m}} = \frac{4.8 \text{ V/m}}{200 \text{ V/m}} = 0.024
\]

(5)

This means, that free charges produced by the 1 V pulse during its 25 ms duration, were fixed in \(k_v = 0.024 = 2.4\% \) of the volume. Since only the liposomes can retain charges which sustain an electric potential in the subsequent acquisition time window, and thereby generate a FVR, almost the entire liposomal volume (= 2.5% from the sample volume, see Table II) should be polarized after expiration of the electric pulse.

If the observed magnetic field effect would be based on conformational changes on the liposome membrane surface, it should be accompanied by additional changes of the electric dipole moment, when effecting the DNLD signal. The electric and magnetic forces \(F_E \) and \(F_M \) can be written as:

\[
F_E = E \cdot Q
\]

(6)

\[
F_M = B \cdot \phi
\]

(7)

where is \(Q \) the charge moved by the electric field \(E \), and \(\phi \) the magnetic flux (dimension \(V \cdot m \)) at the magnetic field strength \(H \) (dimension \(A/m \)). They can be expressed by the (correctly named) magnetic flux density \(B \) (dimension \(V s/Am \)), the magnetic field constant in the vacuum \(\mu_0 = 1.256 \times 10^{-6} \text{ Vs/Am} \), and a proper effective area \(A \). This effective area may be assumed as bordered by two opposite inner electrodes (\(d = 2.5 \text{ mm}, l = 2 \text{ mm} \)) and encloses a cylindrical volume \(V \), the “inner electrode space”. The potential distribution between and outside the electrodes will show a contribution of < 1% of the signal outside these

<table>
<thead>
<tr>
<th>Liposome volume</th>
<th>(V_l)</th>
<th>2.4 \cdot 10^{-21}</th>
<th>m^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane volume per liposome</td>
<td>(V_w)</td>
<td>4.83 \cdot 10^{-22}</td>
<td>m^3/liposome</td>
</tr>
<tr>
<td>Liposome surface</td>
<td>(A_l)</td>
<td>8.66 \cdot 10^{-24}</td>
<td>m^2</td>
</tr>
<tr>
<td>Liposomes pro volume</td>
<td>(n_l)</td>
<td>1.04 \cdot 10^{19}</td>
<td>l/m^3</td>
</tr>
<tr>
<td>Average liposome distance</td>
<td>(d_l)</td>
<td>4.59 \cdot 10^{-7}</td>
<td>m</td>
</tr>
<tr>
<td>Liposomal fractional volume</td>
<td>(k_v)</td>
<td>2.48</td>
<td>%</td>
</tr>
</tbody>
</table>

Table II. Calculated physical properties of the EY liposome probes.
borders. The totally shifted charge \(Q \) by \(B \) can be written by combining (6) and (7):
\[
Q = \frac{B^2 \cdot \mathbf{A}}{E \cdot \mu_0}
\]
(8)

Taking the liposome data shown in Table II, a charge dipole length \(d_e \) can be calculated for discrete electrons on the liposome surface, which match conditions of the electric field strength \(E \) and the magnetic field strength (better: flux density) \(B \) in the probe:
\[
d_e = \frac{Q \cdot A_j}{n_l \cdot e}
\]
(9)

where is \(A_j \) the surface area of one liposome, \(n_l \) the number of liposomes inside the volume \(V \), and \(e \) the elementary charge. \(Q \) will be inserted from (8).

In order to check the assumption of spin polarizations of membrane surface charges as a possible origin of sensitivity to weak magnetic fields, we calculate an electron coherence length \(\lambda \) by the De Broglie equation for an electron with the elementary charge \(e \) and mass \(m_e \):
\[
\lambda = \frac{h}{\sqrt{e \cdot U \cdot 2m_e}}
\]
(10)

where \(h \) is the Planck number \((6.625 \cdot 10^{-34} \text{ Js}) \), \(e \cdot U \) presents an energy term, for which we will insert the kinetic one-electron energy level corresponding to the 1st harmonic of the DNLDS signal, similar as we have done for the dipole calculations upward, yielding \(\lambda = 11.2 \text{ nm} \).

Calculating a matching magnetic flux density \(B \) using equations 8 and 9, which leads to the condition \(\lambda = d_e \), results in \(B \sim 37 \text{ G} \). This corresponds rather well to the local minimum of the 1. harmonic signal for EY liposome experiments (see Fig. 5).

In conclusion spin polarization processes of coupled surface charges on biological membranes could be a possible origin for the observed sensitivity to weak magnetic fields, or at least, could have a supplemental effect on other current discussed biological magnetic field reception mechanisms, like ICR or singlet-triplet mixing of radical pairs. Further investigations will be needed to relate this effect to biological receptor mechanisms for weak magnetic fields and ELF radiation.

Acknowledgement

The author thanks H. Scheer (München) for scientific care and frequent discussions for many years.

