Herbal Remedies Traditionally Used Against Malaria in Ghana: Bioassay-Guided Fractionation of *Microglossa pyrifolia* (Asteraceae) §

Inga Köhlera, Kristina Jenett-Siemsa, Carola Krafta, Karsten Siemsb, Daniel Abbiwc, Ulrich Bienzled and Eckart Eicha

a Institut für Pharmazie (Pharmazeutische Biologie), Freie Universität Berlin, Königin-Luise-Strasse 2+4, D-14195 Berlin, Germany. [E-mail: kjsiems@zedat.fu-berlin.de]
b Analyticon Discovery GmbH, Potsdam, Germany
c Department of Botany, University Legon-Accra, Accra, Ghana
d Institut für Tropenmedizin, Medizinische Fakultät Charité, Humboldt-Universität zu Berlin, Berlin, Germany

* Author for correspondence and reprint requests

Z. Naturforsch 57c, 1022–1027 (2002); received August 27/September 6, 2002

*Plasmodium falciparum*, *Microglossa pyrifolia*, Bioassay-Guided Fractionation

Different extracts from 11 West African plants traditionally used against malaria in Ghana were tested against both the chloroquine-sensitive strain PoW and the chloroquine-resistant clone Dd2 of *Plasmodium falciparum*. Due to the promising *in vitro* activity of the lipophilic extract [IC$_{50}$: 10.5 µg/ml (PoW); 13.1 µg/ml (Dd2)], *Microglossa pyrifolia* (Lam.) Kuntze (Asteraceae) was chosen for further phytochemical investigation. From active fractions 13 compounds were isolated; their structures were established on the basis of spectroscopic methods. 1-Acetyl-6E-geranylgeraniol-19-oic acid and sinapyl diangelate represent new natural compounds. The two diterpenes E-phytol [IC$_{50}$: 8.5 µm (PoW); 11.5 µm (Dd2)], and 6E-geranylgeraniol-19-oic acid [IC$_{50}$: 12.9 µm (PoW); 15.6 µm (Dd2)] proved to be the most active constituents in our test system.