Stimulation of Oxygen Evolution in Photosystem II by Copper(II) Ions

Kvetoslava Burda\textsuperscript{a,c}, Jerzy Kruk\textsuperscript{b}, Kazimierz Strzalka\textsuperscript{b} and Georg H. Schmid\textsuperscript{c}\textsuperscript{*}

\textsuperscript{a} The Henryk Niewodnicański Institute of Nuclear Physics, ul. Radzikowskiego 152, 31-342 Kraków, Poland
\textsuperscript{b} Department of Plant Physiology and Biochemistry, The Jan Zurzycki Institute of Molecular Biology, Jagiellonian University, Al. Mickiewicza 3, 31-120 Kraków, Poland
\textsuperscript{c} Fakultät für Biologie, Lehrstuhl Zellphysiologie, Universität Bielefeld, D-33501 Bielefeld, Germany. Fax: (+49 521) 1066410. E-mail: G.Schmid@Biologie.Uni-Bielefeld.de

\* Author for correspondence and reprint requests

Z. Naturforsch. 57\textsuperscript{c}, 853–857 (2002); received June 3/June 20, 2002

Copper(II) Ions, Stimulation of Oxygen Evolution, Photosystem II

We have found that Copper(II) ions at about equimolar Cu\textsuperscript{2+}/photosystem II (PS II) reaction center proportions stimulate oxygen evolution nearly twofold. This high affinity Cu-binding site is different from the binding sites of Mn and Ca ions. The analysis of the Cu\textsuperscript{2+} content in PS II preparations isolated from wild-type tobacco and a tobacco mutant deficient in light-harvesting complex suggests that Cu\textsuperscript{2+} may be a native component of PS II and may take part in the oxygen evolution process. At higher concentrations, Cu\textsuperscript{2+} ions inhibit oxygen evolution and quench fluorescence.