Electrophysiological Studies and Identification of Possible Sex Pheromone Components of Brazilian Populations of the Sugarcane Borer, *Diatraea saccharalis*

Luciane G. Batista-Pereiraa, Ellen M. Santangelob, Kathrin Steina, C. Rikard Uneliusc, Alvaro E. Eirasd and Arlene G. Corrêaa,*

a Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos – SP, Brazil
b Department of Chemistry, Organic Chemistry, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
c Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden
d Departamento de Parasitolologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte – MG, Brazil. E-mail: agcorrea@dq.ufscar.br

* Author for correspondence and reprint requests

Z. Naturforsch. 57c, 753–758 (2002); received January 24/March 12, 2002

Diatraea saccharalis, Sex Pheromone, (9Z,11E)-Hexadecadienal

Virgin female gland extracts of sugarcane moth *Diatraea saccharalis* (Fabricius) (Lepidoptera: Pyralidae), from three locations in Brazil, have been analyzed. By GC-MS analysis and comparison of the chromatographic retention time of the components of the pheromone gland with those retention times of synthetic standards, we observed the presence of (Z)-hexadec-11-enal (1), hexadecanal (2), (9E,11Z)-hexadecadienal (4), (9Z,11Z)-hexadecadienal (5) and (9E,11E)-hexadecadienal (6), as minor components besides the major constituent (9Z,11E)-hexadecadienal (3) already reported. We found no variations in the composition of the gland extracts deriving from the three Brazilian populations and only two compounds, (Z)-hexadec-11-enal (1) and (9Z,11E)-hexadecadienal (3), elicited antennal responses (GC-EAD). In electroantennography (EAG), however, pure compounds 1 and 3, a binary mixture containing 1 and 3, and a mixture containing all of the six synthetic compounds 1–6 elicited a depolarization in male antennae of *D. saccharalis*, without any statistically different delay. The EAG responses to the other isomers of 9,11-hexadecadienal were small and not significantly different from the control, except for the (9Z,11Z)-isomer (5) which showed an relatively strong electroantennal activity.