Ecto-Phosphatase Activities on the Cell Surface of the Amastigote Forms of *Trypanosoma cruzi*

José Roberto Meyer-Fernandes^{a,*}, Mario Alberto da Silva-Neto^a, Mirna dos Santos Soares^b, Eloise Fernandes^c, Anibal Eugênio Vercesi^c and Mécia Maria de Oliveira^b

^a Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, C. C. S., bloco H, Cidade Universitária, Ilha do Fundão, 21541–590, Rio de Janeiro, Brasil.

Fax: 5521 2708647. E-mail: Meyer@server.bioqmed.ufrj.br

- b Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brasil
- ^c Departamento de Patologia Clínica, Faculdade de Ciências Biomédicas (NMCE), Universidade Estadual de Campinas, 13083–970, CP 6111, Campinas, SP, Brasil
- * Author for correspondence and reprint requests
- Z. Naturforsch. **54c**, 977–984 (1999); received October 5, 1998/May 25, 1999

Trypanosoma cruzi Amastigote, Ecto-Phosphatase, Phosphoseryl Phosphatase, Phosphotyrosyl Phosphatase, Vanadate Inhibition

Live Trypanosoma cruzi amastigotes hydrolyzed p-nitrophenylphosphate (PNPP), phospho-amino-acids and ³²P-casein under physiologically appropriate conditions. PNPP was hydrolysed at a rate of 80 nmol·mg⁻¹·h⁻¹ in the presence of 5 mm MgCl₂, pH 7.2 at 30 °C. In the absence of Mg²⁺ the activity was reduced 40% and we call this basal activity. At saturating concentration of PNPP, half-maximal PNPP hydrolysis was obtained with 0.22 mm MgCl₂. Ca²⁺ had no effect on the basal activity, could not substitute Mg²⁺ as an activator and in contrast inhibited the PNPP hydrolysis stimulated by Mg^{2+} ($I_{50} = 0.43 \text{ mm}$). In the absence of Mg^{2+} (basal activity) the stimulating half concentration ($S_{0.5}$) for PNPP was 1.57 mm, while at saturating MgCl₂ concentrations the corresponding S_{0.5} for PNPP for Mg²⁺-stimulated phosphatase activity (difference between total minus basal phosphatase activity) was 0.99 mm. The Mg-dependent PNPP hydrolysis was strongly inhibited by sodium fluoride (NaF), vanadate and Zn²⁺ but not by tartrate and levamizole. The Mg-independent basal phosphatase activity was insensitive to tartrate, levamizole as well NaF and less inhibited by vanadate and Zn²⁺. Intact amastigotes were also able to hydrolyse phosphoserine, phosphothreonine and phosphotyrosine but only the phosphotyrosine hydrolysis was stimulated by MgCl₂ and inhibited by CaCl₂ and phosphotyrosine was a competitive inhibitor of the PNPP hydrolysis stimulated by Mg²⁺. The cells were also able to hydrolyse ³²P-casein phosphorylated on serine and threonine residues but only in the presence of MgCl₂. These results indicate that in the amastigote form of T. cruzi there are at least two ectophosphatase activities, one of which is Mg²⁺ dependent and can dephosphorylate phospho-aminoacids and phosphoproteins under physiological conditions.