α-Tocopherol Protection against Drought-Induced Damage in *Rosmarinus officinalis* L. and *Melissa officinalis* L.

Sergi Munné-Bosch a, *, Karin Schwarz b and Leonor Alegre a

a Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain. Fax: ++34934112842.

b Institut für Lebensmittelwissenschaft, Universität Hannover, Wunstorfer Strasse 14, 30453 Hannover, Germany

* Author for correspondence and reprint requests

Z. Naturforsch. 54 c, 698–703 (1999); received November 17, 1998/March 20, 1999

α-Tocopherol, Photosynthesis, Drought, *Rosmarinus officinalis*, *Melissa officinalis*

Summer diurnal variations of photosynthesis and α-tocopherol content were measured in relation to natural drought in field-grown rosemary (*Rosmarinus officinalis* L.) and lemon balm (*Melissa officinalis* L.) plants. During the summer relative water contents (RWC) of ca. 40% in *Rosmarinus officinalis* and ca. 30% in *Melissa officinalis* were attained, indicating severe drought. Both species showed similar diurnal patterns of net CO₂ assimilation rates (*A*) with a wide plateau of maximum photosynthesis at midday in the absence of drought and one peak of maximum photosynthesis early in the morning under drought conditions. Net CO₂ assimilation rates decreased by ca. 75% due to drought in both species. *Melissa officinalis* plants showed a significant decrease in the relative quantum efficiency of PSII photochemistry (*ϕ*_{PSII}), ratio of variable to maximum fluorescence yield (*F_v/F_m) and chlorophyll content of leaves by ca. 25% under drought conditions at midday. In contrast, *ϕ*_{PSII}, *F_v/F_m and chlorophyll content remained constant throughout the experiment in *R. officinalis* plants. Although the non-photochemical quenching of chlorophyll fluorescence increased from ca. 1.8 to 3 and the α-tocopherol content rose fifteen fold in both species in response to drought, only *R. officinalis* plants were able to avoid oxidative damage under drought conditions by the joint increase of carotenoids and α-tocopherol.