Effect of Tobamovirus Infection on Thermoluminescence Characteristics of Chloroplasts from Infected Plants

Jaber Rahoutei\(^a\), Matilde Barón\(^a\)*, Isabel García-Luque\(^b\), Magdolna Droppa\(^c\), András Neményi\(^c\) and Gábor Horváth\(^c\)

\(^a\) Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (C.S.I.C.), E-18008 Granada, Spain. Fax: +34-58-129600. E.mail: mbaron@eez.csic.es
\(^b\) Department of Plant Biology, Centro Investigaciones Biológicas, C. S. I.C, E-28006 Madrid, Spain.
\(^c\) Department of Plant Physiology, University of Horticulture and Food Industry, Budapest, P.O. Box 53, Hungary, H-1518.

* Author for correspondence and reprint requests

Biotic Stress, Photosynthetic Electron Transport, Photosystem II, Thermoluminescence, Virus Infection

Changes of thermoluminescence characteristics as well as the \(O_2\)-evolving capacity was analysed in chloroplasts isolated from \textit{Nicotiana benthamiana} infected with pepper and paprika mild mottle viruses and their chimeric hybrids. The electron transport activity in thylakoids of virus-infected plants was inhibited and could be restored by adding DPC or \(Ca^{2+}\) which indicated that the virus infection altered the oxygen-evolving complex. In thermoluminescence characteristics of plants infected with either viruses, the first well defined response was a shift in the peak position of the B band from 20 °C to 35 °C corresponding to \(S_3(S_2)Q_B^-\) and \(S_2Q_B^-\) charge recombinations, respectively, which showed an inhibition in the formation of higher \(S\) states in the water splitting system. Simultaneously, a new band appeared around 70 °C due to chemiluminescence of lipid peroxidation. Further progress of the viral infection dramatically decreased the intensity of bands originated from charge recombinations with a concomitant increase of the band at 70 °C indicating the general oxidative breakdown of injured thylakoids.