High Activity of Binuclear Cobalt(II) Complex for Ethylene Evolution from 1-Aminocyclopropane-1-carboxylic Acid in the Presence of Hydrogen Peroxide

Teruyuki Kobayashi^a, Yumiko Sasaki^b, Tetsuya Akamatsu^b, Toshihiro Ishii^c, Yoshiaki Oda^c, Hideki Masuda^a, Hisahiko Einaga^a and Yuzo Nishida^{*}

Institute for Molecular Science, Myoudaijimachi, Okazaki 444-8585, Japan

- ^a Department of Applied Chemistry, Nagoya Institute of Technology, Nagoya, 466–8585, Japan. Fax: +81-564-55-5245. E-mail: yuzo@ims.ac.jp
- ^b Department of Chemistry, Faculty of Science, Yamagata University, Yamagata 990, Japan
- ^c Department of Agricultural Chemistry, Faculty of Agriculture, Yamagata University, Tsuruoka 997, Japan
- * Author for correspondence and reprint requests
- Z. Naturforsch. 54c, 534-541 (1999); received February 25/March 31, 1999

Ethylene Evolution, Binuclear Metal Complex, ACC, Hydrogen Peroxide

The binuclear Co(II) and Mn(II) complexes with $H_5(HXTA)$, where $H_5(HXTA)$ represents N,N'-(2-hydroxy-5-methyl-1,3-xylylene)bis(N-carboxymethylglycine), induced a strong ethylene evolution from 1-aminocyclopropane-1-carboxylic acid (ACC) in the presence of hydrogen peroxide, whereas activities of the corresponding Fe(III), Ni(II), and V(III) complexes were found negligible. Based on spectroscopic results and mass-spectral data it is proposed that a peroxide adduct of binuclear Co(II) (and Mn(II)) complex with η^1 -coordination mode interacts with ACC, which is chelated to a binuclear cobalt complex leading to facile oxidative degradation of ACC and to evolution of ethylene.