Purification and Characterization of an S-adenosyl-L-methionine:flavonoid 3'-O-methyltransferase from Leaves of Trillium apetalon Makino

Yuki Nakamura, Susumu Teramoto and Kunijiro Yoshitama*

Department of Biological Science, Faculty of Science, Kumamoto University, Kurokami 2-39-1, Kumamoto 860-8555, Japan. Fax: +81-96-342-3439. E-mail: tama@aster.sci.kumamoto-u.ac.jp

* Author for correspondence and reprint requests

Z. Naturforsch. **54c**, 501–507 (1999); received February 1/April 22, 1999

Trillium apetalon, S-adenosyl-L-methionine:flavonoid 3'-O-methyltransferase, Quercetin, Isorhamnetin, Flavonoids

In the leaf extract of *Trillium apetalon* (Liliaceae) distributed in Japan, an enzyme was demonstrated which catalyzes a methyl group transfer from *S*-adenosyl-L-methionine (SAM) to the 3′ position of quercetin and its glycosides. The enzyme (*Trillium* F3′OMT) was purified 433-fold with a yield of 0.2% by (NH₄)₂SO₄ precipitation and chromatographies of DEAE-cellulose, SAH-EAH-Sepharose 4B , Sephacryl S-200 and additional chromatofocusing. *Trillium* F3′OMT has a pH optimum of 7.0 and a pI of 5.3. The apparent molecular weight was estimated by Sephacryl S-200 to be about 78 kDa; SDS-PAGE profile showed that the enzyme was a dimer composed of MW 38 kDa 2 subunits. The enzyme activity was stimulated by EDTA and dithiothreitol (DTT), but strongly inhibited by *p*-chloromercuribenzoate (PCMB) and iodoacetate. The activity was moderately inhibited by Mg²⁺ and Zn²⁺, and strongly inhibited by Co²⁺, Mn²⁺ and Hg²⁺. The apparent K_m values for quercetin and SAM were 10 μm and 3.6 μm, respectively. Lower substrate specificity of the glycosides compared with quercetin indicates that methylation precedes glycosylation in flavonoid biosynthesis of *T. apetalon*.