Antibacterial and Cytotoxic Natural and Synthesized Hydroquinones from Sponge *Ircinia spinosula*
Nikos Mihopoulos\(^{a,c}\), Constantinos Vagias\(^{a}\), Ioanna Chinou\(^{a}\), Christos Roussakis\(^{b}\), Michael Scoullos\(^{c}\), Catherine Harvala\(^{a}\) and Vassilios Roussis\(^{a}\)
\(^{a}\) School of Pharmacy, Department of Pharmacognosy, University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece
\(^{b}\) Department of Pharmacy, University of Nantes, Nantes, France
\(^{c}\) Department of Chemistry, Division III, Laboratory of Environmental Chemistry and Chemical Oceanography, University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece

Z. Naturforsch. **54c**, 417–423 (1999); received January 29/March 9, 1999

Ircinia spinosula, Polyprenylated Hydroquinone, Synthetic Derivative, Antitumoral Activity, Antibacterial Activity
In order to check the structure-activity relationship and find more potent derivatives of the natural products 1 and 2 obtained from sponge *Ircinia spinosula*, a series of oxidation, hydrogenation, acetylation and methylation derivatives was prepared. All compounds (natural and synthetic ones) were screened for their cytotoxic and antibacterial activities. The biological studies showed a wide range of antibacterial activity even though only 2 and 2d showed a moderate cytotoxicity against the clone C98. The oxidation of the hydroquinone to quinone and the hydrogenation of the side-chain increased the antibacterial effect of the molecules.

Reprint requests to Ass. Prof. Dr. Vassilios Roussis. Fax: +301- 7274592. E-mail: vroussis@atlas.uoa.gr