Transformation of Aminosteroids into Pharmacologically Active Amides of Phenolic Acids

Daniela Todorova^a, Maria Tupova^a, Veneta Zapreva^a, Tsenka Milkova^a and Atanas Kuiumdiiev^b

^a Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy

of Sciences, 1113 Sofia, Bulgaria ^b Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Z. Naturforsch. **54c**, 65–69 (1999); received July 28/October 14, 1998

 5α -cholestan- 3β -vl-amine, 5α -cholestan- 3α -vl-amine, 3α - and 3β -amino-(2'-aminoethyl)cholest-5-en, Amides of Cinnamic Acid Derivatives, Antibacterial Activity

acid 4 and 9, and N-cholest-5-en-3α-aminoethyl-di-(3"-phenyl-trans-2"-propene)-amide 10

Amides of cinnamic acid derivatives with 3α - and 3β -cholestanylamines, as well as with 3α and 3β-amino-(2'-aminoethyl)-cholest-5-en were synthesized using dicyclohexylcarbodiimide (DCC) and 1-hydroxy-benzotriazole as efficient additives. Their structure was determined by UV and ¹HNMR. 3β-Amino-(2'-aminoethyl)-cholest-5-en, amides of p-hydroxy-cinnamic

showed moderate antibacterial activity against Staphylococcus aureus. Reprint requests to Assoc. Prof. Dr. Milkova. Fax: 003592 700 225, e-mail: tsmil@orgchm.bas.bg