Identification of Cyclic Enolethers from Insects:
Alkyldihydropyranes from Bees
and Alkyldihydro-4H-pyran-4-ones
from a Male Moth*

W. Francke **, W. Mackenroth, W. Schröder,
and S. Schulz
Institut für Organische Chemie der Universität, Martin-
Luther-King-Platz 6, D-2000 Hamburg 13

J. Tengö
Ecological Station, Uppsala University,
S-38600 Färjestaden

E. Engels and W. Engels ***
Institut für Biologie III (Zoologie) der Universität, Auf der
Morgenstelle 28, D-7400 Tübingen

R. Kittmann, D. Schneider
Max-Planck-Institut für Verhaltensphysiologie,
D-8131 Seewiesen

Z. Naturforsch. 40c, 145 - 147 (1985);
received December 8, 1984

Mass spectrometric fragmentation patterns of alkyl-3,4-
dihydro-2H-pyrans and alkyl-2,3-dihydro-4H-pyran-4-ones
are described. Through GC/MS analyses, respective
compounds showing unbranched carbon skeletons are
identified for the first time as volatile signals of social
and solitary bees and of the male moth Hepialus hexta

We studied mass spectrometric fragmentation
patterns of cyclic enolethers to facilitate their iden­
tification from natural material [1]. Mass spectra of
alkyl-3,4-dihydro-2H-pyrans (1) are characterized
by fragments which correspond to:
A) a-cleavage at 2-C;
B) retro cleavage ("Retro-Diels-Alder-Reaction");
C) retro cleavage with hydrogen transfer to
the oxygen containing fragment;
D) an acylium fragment which contains 6-C and
the respective substituent.

Signals caused by fragmentations C and D are
particularly intense when the substituent at 6-C is a
aryl- or an ethyl-group, while A and B are of low
intensities when 6-C carries a longer chain.

We now found, that an alkyl chain of at least n-
propyl, attached to the sp2-carbon atom which
carries the oxygen, in dihydropyranes as well as in
dihydropuranes and tetrahydrooxepines may furnish
intense signals corresponding to:
E) Mc-Lafferty rearrangement at the side chain;
F) a "formal" y-cleavage at the side chain;
G) Mc-Lafferty rearrangement of the oxygen con­
taining fragment produced by retro cleavage B.

Mass spectra of alkyl-2,3-dihydro-4H-pyran-4-ones
(2) resemble those of alkyl-3,4-dihydro-2H-pyrans
because they also show fragmentations A-G. However,
due to the presence of the carbonyl group
dihydropyranes may give some additional signals.

On the basis of these results we identified for the
first time several alkyldihydropyranes and alkyl-
dihydro-4H-pyran-4-ones both from social and
solitary bees and from a male moth (see Table 1).

During our investigations on odour communic­
tion in bees we studied the cephalic secretions of
social stingless bees and of honey
bees. Among the complex multicomponent mixtures
we identified small amounts of several new cyclic
enolethers. In the abdomen of workers of Apis mellifera
L. we found 2,6-dimethyl-3,4-dihydro-2H-pyran (1a). This compound is also present in head
extracts of the stingless bee Scaptotrigona bipunctata
(Lepetrier) which additionally contain two bisho­
mologues, 2-methyl-6-propyl-3,4-dihydro-2H-pyran
(1b) and 2-methyl-6-pentyl-3,4-dihydro-2H-pyran
(1c). The latter compound was also found in
Nanno­
trigona testaceicornis (Lepetlier), Plebeia droryana
Friese, Teqragona clavipes (F.) and in some Taenian­
drena species. Fig. 1 shows a plotted mass spectrum
of 1c which we now identified as one of the main
components of the cephalic scent mark secretion of
the solitary bee Andrena wilkella K. [2]. Besides
6-butyl-3,4-dihydro-2H-pyran (1f), head extracts of
Partamona cupra (Smith) contain 6-heptyl-2-
methyl-3,4-dihydro-2H-pyran (1d) and 2-methyl-6-
nonyl-3,4-dihydro-2H-pyran (1e).

Compounds 1a–1e form a new row of unbranched
bishomologue cryptic 2-hydroxyalkan-6-ones which
seem to originate from the acetate pool and which

* Dedicated to Prof. H. Francke-Grosman on the oc­
casion of her 85th birthday.
** Reprint requests to Dr. W. Francke.
*** In cooperation with the Departments of Genetics and
Biophysics, University of São Paulo at Ribeirão Preto/Brazil.
0341-0382/85/0100-0145 $ 01.30/0

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der
Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt,
um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher
Nutzungsformen zu ermöglichen.

This work has been digitalized and published in 2013 by Verlag Zeitschrift
für Naturforschung in cooperation with the Max Planck Society for the
Advancement of Science under a Creative Commons Attribution-NonDerivs
3.0 Germany License.
<table>
<thead>
<tr>
<th>No.</th>
<th>R₁</th>
<th>R₂</th>
<th>Insect species</th>
<th>MS (EI, 70 eV) m/z (%), [Fragmentation]</th>
<th>¹H-NMR 270 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>CH₃</td>
<td>CH₃</td>
<td>A. mellifica<sup>a</sup></td>
<td>112 (20), 97 (10) [A], 83 (3), 71 (40) [C], 69 (12), 67 (6), 58 (8), 55 (31), 43 (100) [D]</td>
<td>C₆D₆: 1.14 (d, 3H), 1.41 (m, 2H), 1.75 (s, 3H), 1.85 (m, 2H), 3.75 (m, 1H), 4.43 (m, 1H)</td>
</tr>
<tr>
<td>¹b</td>
<td>CH₃</td>
<td>C₃H₇</td>
<td>S. bipunctata</td>
<td>140 (20), 125 (7) [A], 112 (41) [E], 99 (18) [C], 97 (29), 83 (20), 71 (46) [D], 70 (22) [G], 55 (100), 43 (67)</td>
<td>C₆D₆: 0.91 (t, 3H), 1.16 (d, 3H), 1.26 to 1.52 (m, 2H), 1.62 (m, 2H), 1.77 to 2.04 (m, 2H), 2.09 (t, 2H), 3.78 (m, 1H), 4.48 (m, 1H)</td>
</tr>
<tr>
<td>¹c</td>
<td>CH₃</td>
<td>C₃H₅</td>
<td>S. bipunctata</td>
<td>168 (18), 126 (14) [B], 125 (41) [F], 112 (100) [E], 97 (36), 84 (29), 83 (46), 70 (35) [G], 55 (86), 43 (56)</td>
<td>C₆D₆: 0.88 (t, 3H), 1.17 (d, 3H), 1.23 to 1.67 (m, 8H), 1.79 to 2.07 (m, 2H), 2.13 (t, 2H), 3.89 (m, 1H), 4.15 (m, 1H)</td>
</tr>
<tr>
<td>¹d</td>
<td>CH₃</td>
<td>C₃H₁₅</td>
<td>P. cupira</td>
<td>196 (10), 125 (53) [F], 112 (100) [E], 97 (22), 84 (21), 83 (32), 70 (20) [G], 58 (18), 55 (60), 43 (37)</td>
<td>C₆D₆: 0.88 (t, 3H), 1.18 (d, 3H), 1.20 to 1.34 (m, 10H), 1.55 to 1.71 (m, 2H), 1.78 to 2.10 (m, 2H), 2.16 (t, 2H), 3.81 (m, 1H), 4.53 (m, 1H)</td>
</tr>
<tr>
<td>¹e</td>
<td>CH₃</td>
<td>C₃H₁₇</td>
<td>P. cupira</td>
<td>224 (6), 125 (46) [F], 112 (100) [E], 97 (15), 84 (13), 83 (20), 70 (13) [G], 58 (13), 55 (38), 43 (27)</td>
<td>C₆D₆: 0.91 (t, 3H), 1.18 (d, 3H), 1.20 to 1.53 (m, 16H), 1.78 to 2.06 (m, 2H), 2.16 (t, 2H), 3.79 (m, 1H), 4.52 (m, 1H)</td>
</tr>
<tr>
<td>¹f</td>
<td>H</td>
<td>C₄H₉</td>
<td>P. cupira</td>
<td>140 (17), 111 (9) [F], 98 (100) [E], 85 (11) [D], 83 (27), 70 (20) [G], 57 (15), 56 (15), 55 (61), 43 (48)</td>
<td>C₆D₆: 0.88 (t, 3H), 1.23 to 1.48 (m, 4H), 1.78 (m, 2H), 1.96 (m, 4H), 3.96 (m, 2H), 4.44 (t, 1H)</td>
</tr>
<tr>
<td>2a</td>
<td>CH₃</td>
<td>C₂H₅</td>
<td>H. hecta</td>
<td>140 (55), 125 (2) [A], 111 (3), 99 (92) [C], 98 (14) [B], 69 (100), 57 (62) [D], 55 (7), 43 (25)</td>
<td>CDC₃: 1.08 (t, 3H), 1.41 (d, 3H), 2.22 (q, 2H), 2.34 (m, 2H), 4.44 (m, 1H), 5.25 (m, 1H)</td>
</tr>
<tr>
<td>2b</td>
<td>C₃H₅</td>
<td>C₂H₅</td>
<td>H. hecta</td>
<td>154 (16), 126 (3), 125 (4) [A], 99 (100) [C], 98 (5) [B], 69 (51), 57 (51) [D], 56 (17), 43 (38)</td>
<td>CDC₃: 0.99 (t, 3H), 1.10 (t, 3H), 1.62 to 1.89 (m, 2H), 2.25 (q, 2H), 2.37 (m, 2H), 4.26 (m, 1H), 5.28 (m, 1H)</td>
</tr>
<tr>
<td>2c</td>
<td>C₂H₅</td>
<td>CH₃</td>
<td>H. hecta</td>
<td>140 (35), 125 (3), 112 (3), 111 (3) [A], 97 (2), 85 (100) [C], 84 (4) [B], 69 (23), 56 (13), 43 (77) [D]</td>
<td>CDC₃: 0.92 (t, 3H), 1.55 to 1.83 (m, 2H), 1.91 (s, 3H), 2.28 (m, 2H), 4.19 (m, 1H), 5.18 (m, 1H)</td>
</tr>
<tr>
<td>2d</td>
<td>CH₃</td>
<td>C₂H₅</td>
<td>H. hecta</td>
<td>182 (27), 167 (1) [A], 141 (58) [C], 140 (16) [B], 139 (17) [F], 126 (60) [E], 99 (11) [D], 98 (21), 97 (22), 84 (100) [G], 69 (72), 55 (25), 43 (31)</td>
<td>CDC₃: 0.92 (t, 3H), 1.34 (m, 4H), 1.46 (d, 3H), 1.58 (m, 2H), 2.24 (t, 2H), 2.42 (m, 2H), 4.50 (m, 1H), 5.31 (m, 1H)</td>
</tr>
</tbody>
</table>

^a Found in abdomina: has been erroneously reported as a constituent of the cephalic secretion¹.
Fig. 1. 70 eV Mass spectrum of 2-methyl-6-pentyl-3,4-dihydro-2H-pyran and fragmentation.

Fig. 2. 70 eV Mass spectrum of 6-ethyl-2-methyl-2,3-dihydro-4H-pyran-4-one.

shows a plotted mass spectrum of this compound, which to our knowledge is the first compound identified from Hepialidae. Additionally, a homologue of (2a), 2,6-diethyl-2,3-dihydro-4H-pyran-4-one (2b), proved to be present in trace amounts. The two minor components and some of the trace components mentioned above, are derivatives of the 2,9-dioxabicyclo[3.3.1]non-7-ene system [5].

While the new 2,3-dihydro-4H-pyran-4-ones show unbranched carbon skeletons, tetrasubstituted compounds which are probably derived from propionate units have been identified from Stegobium paniceum L. and Lasioderma serricorne F. (Col. Anobiidae) [6, 7].

GC analyses and GC/MS investigations were carried out on 50 m glass capillary columns with WG 11 as a stationary phase and on 50 m fused silica capillaries coated with SE 54. Mass spectra were obtained with a Varian MAT 311A. Chemical structures of natural products were confirmed by comparison of GC/MS data with those of authentic reference samples. Mass spectral data and 1H-NMR data of the compounds are compiled in Table I.

Alkyl-3,4-dihydro-2H-pyrans were prepared by Grignard reaction of lactones with alkylmagnesiumhalides followed by elimination of water from the obtained cyclic hemiacetals [8]. Optically active dihydropyrans may be produced from respective optically active lactones. Alkyl-2,3-dihydro-4H-pyran-4-ones were prepared by acylation of β-ketoesters with ω-unsaturated acylhalogenides followed by cyclization, saponification and decarboxylation [9]. Bioassays with synthetic compounds will be described elsewhere.

Acknowledgements

The authors greatly acknowledge financial support by the Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie and the Swedish National Science Foundation.