Chirality of the Hydrogen Transfer to NAD Catalyzed by myo-Inositol Dehydrogenase from Klebsiella pneumoniae

Miguel A. Alizade, Karl Gaede
Centro de Biofisica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas and
Klaus Brendel
Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona

(Received May 19/June 21, 1976)

Chirality, Hydrogen Transfer, myo-Insitol Dehydrogenase

The chirality of the hydrogen transfer to NAD catalyzed by myo-inositol dehydrogenase (myo-inositol: NAD 2-oxido-reductase, EC 1.1.1.18) from Klebsiella pneumoniae (formerly classified taxonomically as Aerobacter aerogenes or Klebsiella aerogenes) was investigated. 4-3H-NAD was enzymatically reduced to 4-3H-NADH with non-labeled myo-inositol and myo-inositol dehydrogenase. The stereochemistry of the prochiral center at C4 of the produced NADH should be classified as an (R) or A-type enzyme with respect to the stereochemistry of the hydrogen transfer to NAD.

The absolute stereochemistry of direct hydrogen transfer from substrates to the prochiral C4 position of the nicotinamide ring of the coenzyme, and vice versa, catalyzed by pyridine nucleotide-linked dehydrogenases has been conclusively demonstrated 2-5. Dehydrogenases able to catalyze the hydrogen transfer to the pro(R) or pro(S) position of the C4 prochiral center of the nicotinamide ring of the coenzyme 4 were classified as A or B-type enzymes, respectively 2-5.

A large number of NAD and NADP-linked dehydrogenases have been investigated with regard to their stereochemistry of hydrogen transfer to the coenzyme. Results are summarized in references 6 to 8.

In this communication, the chirality of hydrogen transfer catalyzed by the inducible NAD-linked dehydrogenase myo-inositol dehydrogenase (EC 1.1.1.18) from K. pneumoniae 1 was investigated. 4-3H-NAD was enzymatically reduced to 4-3H-NADH with myo-inositol and myo-inositol dehydrogenase from K. pneumoniae. The chirality at the C4 position of the produced 4-3H-NADH was analyzed by transfer of the hydrogen of the (4S) position to 2-ketoglutarate with the B-type (S)glutamate dehydrogenase. From Table I one can ascertain that more than 95% of the label originally present in the (4S)-position of the generated 4-3H-NADH is transferable to 2-ketoglutarate by the reaction catalyzed by (S)glutamate dehydrogenase. This outcome was confirmed in another experiment, in which the specific radioactivity of the concomitantly produced NADH was determined. For that purpose the NAD content of another aliquot from the incubation mixture was enzymatically reduced to NADH with nonlabelled (S)lactate and (S)lactate dehydrogenase. As expected only a small fraction (3%) of the original label remains attached to the newly formed NADH (NADH* from Table I). These results prove that the label of the originally produced 4-3H-NADH is located at the (4S)position of the nicotinamide ring. Hence the hydrate transferred from nonlabelled myo-inositol to 4-3H-NADH catalyzed by myo-inositol dehydrogenase must have entered the (4R)-position of the produced (4S) 4-3H-NADH. This result allows the classification of the investigated myo-inositol dehydrogenase from K. aerogenes as an (R) or A-type enzyme.

Experimental Section

Myo-Inositol, pyruvic acid, (S)lactic acid, (S)-glutamic acid, (S)-lactate dehydrogenase (EC 1.1.1.27) from rabbit muscle, (S)glutamate dehydrogenase (EC 1.4.1.3) from beef heart, and myo-inositol dehydrogenase (EC 1.1.1.18) from Klebsiella pneumoniae 9,10 were purchased from Sigma Chemical Co. 4-3H-NAD with a specific radioactivity of Table I refer to the following steps in the following reaction scheme:

\[\text{4-3H-NAD} + \text{myo-inositol} \rightarrow \text{2-keto-myoinositol} \quad \text{4-3H-NAD} + \text{ylactate} \rightarrow \text{pyruvate} + \text{4-3H-NADH} \]

Abbreviations used: IDH, myo-inositol dehydrogenase (EC 1.1.1.18); GDH, (S)glutamate dehydrogenase (EC 1.4.1.3); LDH, (S)lactate dehydrogenase (EC 1.1.1.27).
activity of 50 Ci/mol was obtained from The Radiochemical Center, Amersham. Myo-inositol was recrystallized three times from water by addition of ethanol. Myo-Inositol dehydrogenase was further purified by chromatography at 5 °C on a 1 x 30 cm P2-column (Bio-Rad Lab.) previously equilibrated with 0.05 M Tris HCl buffer of pH 8.2 (measured at 25 °C) and obtained by elution with the same buffer.

The enzymatic hydrogen transfer from myo-inositol to $[^{4}$-3H]NAD was performed incubating 9.0 μmol of $[^{4}$-3H]NAD with a specific radioactivity of 9.2×10^6 dpm/\(\mu\)mol with 48 μmol of non-labelled myo-inositol and 0.4 units of myo-inositol dehydrogenase (19 U/mg) in a total volume of 3.0 ml of reaction medium containing in addition 600 μmol of Tris-HCl buffer previously adjusted to pH 8.4 at 25 °C. After a 10 minute incubation, 0.6 μmol $[^{4}$-3H]$NADH$ was isolated and its chirality at C4 determined as already described.

Work supported in part by the Regional Program of Scientific and Technological Development of the Organization of the American States (OAS), the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICIT) and USPHS Grant NIH AM 14977.

9 W. A. Anderson and B. Magasanik, J. Biol. Chem. 246, 5653—5661 [1971].