Contribution of Strand Breakage to Inactivation of γ-Irradiated Dry $\Phi X 174$-DNA

Christine Lücke-Huhle, Angelika Seiter, and Horst Jung *
Institut für Strahlenbiologie, Kernforschungszentrum Karlsruhe

(Z. Naturforsch. 29 c, 98–99 [1974]; received November 12, 1973)

Phage-DNA, γ-Irradiation, Infectivity, Strand Breakage

By the occurrence of one strand break, the circular and single-stranded DNA of the bacteriophage $\Phi X 174$ is converted to a linear molecule of identical molecular weight, a fact making the separation, by centrifugation, of broken and unbroken molecules difficult. Therefore, in the earlier investigations the number of broken molecules could not be determined directly but was calculated from the amount of smaller fragments originating from circular ΦX-DNA after the occurrence of two and more strand breaks. However, the accuracy of this indirect method is not wholly satisfying.

After testing and improving the methods to separate circular and linear $\Phi X 174$-DNA molecules of identical molecular weight (Lücke-Huhle and Jung 1) we reinvestigated the contribution of strand breakage to inactivation of $\Phi X 174$-DNA irradiated in the dry state. The DNA of bacteriophage $\Phi X 174$ am3 (Hutchinson and Sinsheimer 2) was labelled with 3H and extracted using the hot phenol method (Guthrie and Sinsheimer 3). After purification, the DNA was freeze-dried on microscope cover slips. Several cover slips were placed between the windings of a wire coil into glass ampoules and sealed with a flame evacuating to 10^{-3}Torr for several hours. Irradiation was performed in a 60Co-γ source for several hours. Irradiation was performed in a 60Co-γ source at a dose-rate of 680 krad/hour. The DNA was dissolved off the cover slips either in 0.5 ml tris buffer to determine plaque-forming ability (Jung and Kurzinger 4) or in 0.6 ml of an alkaline buffer (pH 12.0, containing 5 per cent sucrose, 1.5 mM Na-citrate, 0.1 mM EDTA, and 4 mM NaOH) for sedimentation analysis.

Fig. 1 shows an example of the distribution of radioactivity from 3H-labelled $\Phi X 174$-DNA after centrifugation in an alkaline sucrose gradient. When the DNA molecules have sedimented nearly to the bottom of the centrifuge tube, the broken molecules are well separated from the undamaged circular molecules. Already in the control samples, a certain portion of the molecules are broken; some

![Fig. 1](image-url)
Fig. 1. Sedimentation pattern of 3H-labelled $\Phi X 174$-DNA in an alkaline sucrose gradient after irradiation with 60Co-γ radiation in the dry state. Direction of sedimentation was from right to left. Conditions of centrifugation: 34,000 rpm, 5 °C, 18 hours; 5 to 20 per cent sucrose gradient (pH 12.0) buffered by 5 mM Na-citrate, 1 mM EDTA, and 4 mM NaOH; SW 40 swinging bucket rotor, Spinco L2-50 B ultracentrifuge; 50 fractions collected. I: Unbroken circular $\Phi X 174$-DNA. II: Linear DNA molecules originating from component I by the occurrence of one strand break. III: Linear DNA molecules of reduced molecular weight originating from component II by the occurrence of one or more additional strand breaks.

breaks result from nuclear disintegrations in the radioactively-labelled molecules, some are caused during isolation and freeze-drying of the DNA.

![Fig. 2](image-url)
Fig. 2. Inactivation and strand breakage in $\Phi X 174$-DNA after γ-irradiation in the dry state. ○ Loss of plaque-forming ability as tested in a spheroplast system. ▼ Fraction of unbroken molecules as determined by sedimentation in an alkaline sucrose gradient.

Requests for reprints should be sent to Dr. Christine Lücke-Huhle, Institut für Strahlenbiologie, Kernforschungszentrum, D-7500 Karlsruhe 1, Postfach 3640, Germany.
(Lücke-Huhle and Jung5). With increasing dose the amount of circular molecules decreases and that of the broken molecules increases. Especially at higher doses, the appearance of molecules of reduced molecular weight (having suffered two or more breaks) is obvious.

Fig. 2 shows the percentage of infectious \(\Phi X\) 174-DNA as well as the percentage of unbroken molecules at various \(\gamma\)-ray doses. The data plotted are average values from several experiments, the straight lines represent least square fits. The \(D_{37}\) values calculated from the slopes of the dose-effect curves amount to \((658 \pm 46)\) krads for the loss of plaque-forming ability and \((749 \pm 81)\) krads for the occurrence of strand breaks indicating that under the experimental conditions applied \(88 \pm 16\) per cent of the inactivated \(\Phi X\) 174-DNA molecules carry at least one strand break.

Since separation of circular and linear \(\Phi X\)-DNA molecules without addition of formaldehyde is possible only at high pH and low ionic strength, sedimentation could not be performed in neutral gradients. Thus, the breaks determined in this work derive from breaks formed directly by irradiation and from 'alkali-labile bonds' converted to strand breaks by alkaline treatment. In \(\gamma\)-irradiated double-stranded \(\Phi X\) 174 RF-DNA 22 per cent of the single-strand breaks measured under alkaline conditions are due to alkali-labile bonds (Lücke-Huhle \textit{et al.}6). Since the fraction of alkali-labile bonds in \(\gamma\)-irradiated single- and in double-stranded DNA was found to be about the same (Bopp and Hagen7, Kessler \textit{et al.}8) we can assume 22 per cent of the strand breaks determined in the present study also to be due to alkali-labile bonds and \(78 \pm 7\) per cent to be 'real' breaks. Thus, we come to the result that \(69 \pm 19\) per cent of the \(\Phi X\) 174-DNA molecules irradiated in the dry state are inactivated by strand breakage and only one third by other types of damage.

The value of \(69\) per cent obtained in this study is substantially higher than the figure of 26 per cent reported by Lytle and Ginoza9. The fact that these authors irradiated \(\Phi X\)-DNA in frozen suspension cannot account for the difference under discussion, since the number of alkali-labile lesions does not depend on whether the DNA is irradiated in frozen solution or in the dry state (Lücke-Huhle \textit{et al.}6). The discrepancy may be due to the fact that our method of separation of broken and unbroken molecules substantially increases the accuracy of the experimental techniques applied.

2 C. A. Hutchison and R. L. Sinsheimer, J. molecular Biol. 18, 429 [1966].
3 G. D. Guthrie and R. L. Sinsheimer, Biochim. biophysica Acta [Amsterdam] 72, 290 [1963].
6 C. Lücke-Huhle, M. Pech, and H. Jung, Biophysik, in press.
7 A. Bopp and U. Hagen, Biochim. biophysica Acta [Amsterdam] 209, 320 [1970].
8 B. Kessler, A. Bopp, and U. Hagen, Int. J. Radiat. Biol. 20, 75 [1971].