Supporting Information

The Reduction of Pyridine by K₁₂Si₁₇ to the 4,4'- Bipyridine Radical Anion [C₁₀H₈N₂]^{-•}: Crystal Structure and Spectroscopic Characterization

Christian B. Benda and Thomas F. Fässler

Figure S1: Asymmetric unit completed by symmetry operations of the crystal structure of **1**. Anisotropic displacement ellipsoids of all atoms are drawn at the 50 % probability level at 150 K.

Figure S2: Powder X-ray diffraction pattern of compound **1** at 298(2) K (black) and calculated diffraction pattern based on the data set of the single-crystal diffraction at 150(2) K (red). P-XRD data were collected at on a Stoe diffractometer in Debye-Scherrer geometry using CuK α_1 radiaton (1.54056 Å) equipped with a position-sensitive detector (Mythen).

Figure S3: ¹H NMR spectra of a) compound 1 in CD_3CN (*) freshly prepared (deep-purple solution) and b) after exposure to air (almost colorless solution).

Figure S4: a) ¹³C NMR and **b)** ¹³C DEPT NMR spectra (CH, CH₃ negative, CH₂ positive) of compound **1** in CD₃CN (*) after exposure to air (colorless solution).

¹ H NMR, 1'		¹³ C NMR, 1'		
δ	Assignment	δ	Assignment	
8.70 (4.5, 1.6 Hz)	bipy-C _α H	151.60	bipy- C_{α}	
7.67 (4.5, 1.7 Hz)	bipy-C _β H	146.10	bipy-C _γ	
		122.37	bipy-C _β	
3.56	[2.2.2]crypt	71.21	[2.2.2]crypt	
3.51	[2.2.2]crypt	68.42	[2.2.2]crypt	
2.52	[2.2.2]crypt	54.67	[2.2.2]crypt	

Table S1: Chemical shifts δ (ppm) and assignments for the ¹H und ¹³C NMR spectra of compound **1** after exposure to air (**1**') in CD₃CN at 298(2) K.

Figure S5: EPR spectrum of compound 1 in ethylenediamine measured with an Mn standard (*).

Two N atoms (spin, I = 1) in the radical anion of **1** generate five signals with a hyperfine coupling constant of $a_N = 0.36$ mT (blue). Each of these signal splits to a quintet with $a_{H2} = 0.24$ mT (green) due to four H atoms (spin, I = ½). Additional splitting of each signal occurs with $a_{H1} = 0.04$ mT (red). Compound **1**: g = 1.95069. For comparison the g value for the Na(4,4'-bipy)·(en) is reported with g = 2.00429 [1].

Figure S6: IR spectra of compound **1** in a KBr sandwich disc (transmission mode) and of pure [2.2.2]crypt (total reflection mode, ATR) for comparison. Values in brackets are the corresponding transmittance (given in %) of each band. 3074 (75), 3031 (71), 2975 (63), 2960 (63), 2881 (51), 2811 (57), 1575 (35), 1471 (70), 1458 (73), 1440 (76), 1400 (79), 1382 (84), 1357 (60), 1344 (73), 1294 (65), 1257 (74), 1242 (57), 1197 (53), 1162 (79), 1128 (54), 1097 (31), 1078 (47), 1056 (72), 1008 (78), 945 (36), 929 (57), 829 (57), 817 (80), 761 (64), 688 (82), 586 (75).

Figure S7: Electronic spectra of compound **1** dissolved in anhydrous acetonitrile (black), after exposure to air (grey, solid) and of pure acetonitrile for comparison (grey, dashed).

The (black) spectrum of a deep-purple solution of compound **1** in acetonitrile shows three dominant bands with maxima of absorbance (λ_{max}) at 384 nm, 568 nm and 644 nm; the first two bands correspond to the bipyridinyl radical anions dissolved in pyridine with maxima at 381 nm and 570 nm according to literature [2]. When this solution is exposed to air a color change to light yellow is observed as described above. The corresponding spectrum (grey) exhibits two bands with their maxima at 242 nm and 336 nm. In the literature these bands are assigned to monomeric pyridine radicals with absorbance at 244 nm and 330 nm [2].

	x	у	z	Uiso*/Ueq
K	0.7500	0.97844 (5)	0.2500	0.02511 (14)
N1	0.48461 (10)	0.98090 (14)	0.21060 (7)	0.0257 (3)
01	0.65849 (9)	1.09481 (12)	0.09418 (6)	0.0312 (3)
O2	0.62197 (8)	0.67536 (11)	0.24382 (6)	0.0280 (3)
03	0.59820 (8)	1.12899 (12)	0.36039 (6)	0.0297 (3)
C1	0.45873 (14)	1.0316 (2)	0.12568 (10)	0.0309 (4)
H1A	0.4680 (11)	0.9332 (17)	0.0922 (7)	0.024 (4)*
H1B	0.3744 (12)	1.0747 (16)	0.1187 (8)	0.030 (4)*
C2	0.54193 (14)	1.1631 (2)	0.09577 (11)	0.0306 (4)
H2A	0.5178 (12)	1.1963 (17)	0.0392 (9)	0.037 (4)*
H2B	0.5393 (12)	1.2614 (17)	0.1306 (9)	0.036 (5)*
C3	0.73795 (15)	1.1975 (2)	0.05084 (11)	0.0305 (4)
H3A	0.7090 (11)	1.2055 (15)	-0.0071 (9)	0.028 (4)*
H3B	0.7389 (12)	1.3106 (18)	0.0725 (8)	0.037 (4)*
C4	0.43515 (15)	0.8141 (2)	0.22358 (11)	0.0309 (4)
H4A	0.4224 (11)	0.7995 (15)	0.2822 (8)	0.026 (4)*
H4B	0.3575 (12)	0.8041 (16)	0.1952 (8)	0.029 (4)*
C5	0.51384 (14)	0.6764 (2)	0.19515 (11)	0.0314 (4)
H5A	0.4757 (12)	0.5671 (18)	0.2025 (7)	0.030 (4)*
H5B	0.5317 (12)	0.6896 (15)	0.1344 (9)	0.034 (4)*
C6	0.69389 (14)	0.5363 (2)	0.22449 (10)	0.0313 (4)
H6A	0.6507 (11)	0.4357 (17)	0.2365 (7)	0.030 (4)*
H6B	0.7101 (11)	0.5365 (15)	0.1638 (8)	0.032 (4)*
C7	0.43272 (15)	1.1019 (2)	0.26656 (10)	0.0322 (4)
H7A	0.4509 (11)	1.2153 (17)	0.2483 (7)	0.023 (4)*
H7B	0.3457 (12)	1.0934 (15)	0.2640 (7)	0.024 (4)*
C8	0.47540 (14)	1.0853 (2)	0.35320 (10)	0.0329 (4)
H8A	0.4288 (12)	1.1560 (17)	0.3868 (8)	0.037 (4)*
H8B	0.4656 (12)	0.9673 (18)	0.3756 (8)	0.035 (4)*
C9	0.64071 (15)	1.1227 (2)	0.44322 (10)	0.0305 (4)
H9A	0.5869 (11)	1.1857 (15)	0.4768 (7)	0.022 (4)*
H9B	0.6408 (12)	1.0017 (17)	0.4619 (8)	0.034 (4)*
C10	0.05623 (12)	0.47615 (17)	0.01742 (8)	0.0243 (3)
C11	0.09478 (15)	0.5209 (2)	0.09748 (10)	0.0333 (4)
H11	0.0444 (12)	0.5775 (16)	0.1311 (8)	0.028 (4)*

Table S2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$ for compound 1.

	x	у	z	$U_{ m iso}$ */ $U_{ m eq}$
C12	0.20450 (16)	0.4759 (2)	0.12779 (11)	0.0417 (4)
H12	0.2246 (12)	0.5063 (17)	0.1837 (9)	0.044 (5)*
N2	0.28644 (12)	0.38616 (17)	0.08871 (9)	0.0450 (4)
C13	0.24874 (16)	0.3399 (2)	0.01304 (12)	0.0384 (4)
H13	0.3031 (13)	0.2705 (18)	-0.0169 (8)	0.040 (5)*
C14	0.14174 (14)	0.37905 (18)	-0.02367 (10)	0.0289 (4)
H14	0.1242 (11)	0.3400 (14)	-0.0772 (8)	0.016 (4)*

Table S3: Atomic displacement parameters ($Å^2$).

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Κ	0.0224 (3)	0.0248 (3)	0.0282 (3)	0.000	0.0035 (2)	0.000
N1	0.0225 (7)	0.0258 (7)	0.0288 (7)	-0.0017 (6)	0.0015 (6)	0.0012 (6)
01	0.0285 (6)	0.0292 (6)	0.0360 (6)	-0.0016 (5)	0.0041 (5)	0.0098 (5)
02	0.0257 (6)	0.0242 (6)	0.0340 (6)	0.0011 (5)	0.0007 (5)	-0.0035 (5)
O3	0.0237 (6)	0.0397 (7)	0.0257 (6)	0.0001 (5)	0.0030 (5)	-0.0020 (5)
C1	0.0260 (10)	0.0313 (10)	0.0352 (10)	0.0002 (9)	-0.0045 (8)	0.0002 (9)
C2	0.0299 (10)	0.0297 (10)	0.0320 (11)	0.0018 (8)	-0.0038 (8)	0.0018 (9)
C3	0.0368 (11)	0.0274 (10)	0.0269 (10)	-0.0053 (9)	-0.0009 (8)	0.0062 (9)
C4	0.0237 (10)	0.0319 (10)	0.0371 (11)	-0.0041 (8)	0.0007 (9)	0.0008 (9)
C5	0.0282 (10)	0.0287 (11)	0.0371 (11)	-0.0054 (8)	-0.0008 (9)	-0.0012 (9)
C6	0.0325 (9)	0.0219 (9)	0.0398 (11)	-0.0023 (8)	0.0055 (8)	-0.0016 (8)
C7	0.0195 (9)	0.0325 (10)	0.0446 (11)	0.0039 (9)	0.0029 (8)	-0.0036 (9)
C8	0.0256 (10)	0.0374 (11)	0.0362 (11)	-0.0002 (9)	0.0092 (8)	-0.0052 (9)
C9	0.0360 (11)	0.0305 (11)	0.0253 (10)	0.0077 (8)	0.0076 (8)	-0.0012 (8)
C10	0.0286 (8)	0.0198 (8)	0.0245 (9)	-0.0042 (8)	0.0019 (7)	0.0025 (7)
C11	0.0372 (10)	0.0324 (10)	0.0302 (10)	0.0020 (9)	-0.0010 (9)	-0.0033 (8)
C12	0.0462 (12)	0.0458 (11)	0.0323 (11)	-0.0040 (10)	-0.0102 (9)	0.0007 (9)
N2	0.0379 (9)	0.0496 (9)	0.0470 (10)	0.0023 (8)	-0.0056 (8)	0.0066 (8)
C13	0.0338 (11)	0.0359 (11)	0.0462 (12)	0.0049 (9)	0.0100 (10)	0.0067 (9)
C14	0.0327 (10)	0.0290 (10)	0.0250 (10)	-0.0013 (8)	0.0026 (8)	0.0031 (8)

К—ОЗ	2.8020 (9)	C4—H4A	0.985 (13)
K—O3 ⁱ	2.8020 (9)	C4—H4B	0.978 (14)
K—O2	2.8274 (10)	С5—Н5А	0.986 (14)
K—O2 ⁱ	2.8274 (10)	C5—H5B	1.030 (14)
K—O1	2.8818 (9)	C6—C6 ⁱ	1.489 (3)
K—O1 ⁱ	2.8818 (9)	С6—Н6А	0.966 (13)
K—N1 ⁱ	3.0261 (11)	C6—H6B	1.019 (13)
K—N1	3.0261 (11)	С7—С8	1.492 (2)
N1—C4	1.4684 (18)	С7—Н7А	0.983 (13)
N1—C7	1.4708 (18)	С7—Н7В	0.978 (12)
N1—C1	1.4727 (18)	C8—H8A	0.959 (14)
O1—C2	1.4192 (17)	C8—H8B	1.023 (14)
O1—C3	1.4224 (17)	C9—C3 ⁱ	1.488 (2)
O2—C6	1.4201 (17)	С9—Н9А	0.973 (13)
O2—C5	1.4308 (17)	С9—Н9В	1.020 (13)
O3—C8	1.4230 (17)	C10-C11	1.417 (2)
O3—C9	1.4275 (17)	C10-C10 ⁱⁱ	1.421 (3)
C1—C2	1.503 (2)	C10C14	1.4235 (19)
C1—H1A	0.971 (13)	C11—C12	1.361 (2)
C1—H1B	1.010 (13)	C11—H11	0.923 (13)
C2—H2A	0.995 (14)	C12—N2	1.347 (2)
С2—Н2В	0.976 (14)	C12—H12	0.969 (14)
C3—C9 ⁱ	1.488 (2)	N2—C13	1.352 (2)
С3—НЗА	0.997 (14)	C13—C14	1.362 (2)
С3—Н3В	0.976 (14)	C13—H13	0.971 (14)
C4—C5	1.500 (2)	C14—H14	0.947 (12)
O3—K—O3 ⁱ	128.85 (4)	C9 ⁱ —C3—H3A	110.9 (7)
O3—K—O2	94.38 (3)	O1—C3—H3B	110.9 (8)
O3 ⁱ —K—O2	131.86 (3)	C9 ⁱ —C3—H3B	110.7 (8)
O3—K—O2 ⁱ	131.86 (3)	НЗА—СЗ—НЗВ	106.7 (11)
O3 ⁱ —K—O2 ⁱ	94.38 (3)	N1—C4—C5	113.52 (13)
O2—K—O2 ⁱ	61.07 (4)	N1—C4—H4A	108.6 (8)
O3—K—O1	103.18 (3)	C5—C4—H4A	108.8 (8)
O3 ⁱ —K—O1	59.46 (3)	N1—C4—H4B	109.9 (8)
O2—K—O1	94.69 (3)	C5—C4—H4B	108.4 (8)

Table S4: Geometric parameters (Å, deg) for $[K([2.2.2]crypt)][C_{10}H_8N_2]$ (1).

O2 ⁱ —K—O1	118.50 (3)	H4A—C4—H4B	107.5 (11)
O3—K—O1 ⁱ	59.46 (3)	O2—C5—C4	109.12 (14)
O3 ⁱ —K—O1 ⁱ	103.18 (3)	O2—C5—H5A	106.8 (8)
O2—K—O1 ⁱ	118.50 (3)	C4—C5—H5A	110.9 (8)
O2 ⁱ —K—O1 ⁱ	94.69 (3)	O2—C5—H5B	110.7 (8)
01—K—O1 ⁱ	142.13 (4)	C4—C5—H5B	111.2 (7)
O3—K—N1 ⁱ	118.25 (3)	H5A—C5—H5B	108.0 (11)
O3 ⁱ —K—N1 ⁱ	61.38 (3)	O2—C6—C6 ⁱ	110.50 (11)
O2—K—N1 ⁱ	120.56 (3)	O2—C6—H6A	108.7 (8)
O2 ⁱ —K—N1 ⁱ	60.19 (3)	C6 ⁱ —C6—H6A	107.8 (8)
01—K—N1 ⁱ	120.48 (3)	O2—C6—H6B	109.8 (7)
O1 ⁱ —K—N1 ⁱ	59.24 (3)	C6 ⁱ —C6—H6B	112.1 (8)
O3—K—N1	61.38 (3)	H6A—C6—H6B	107.9 (10)
O3 ⁱ —K—N1	118.25 (3)	N1—C7—C8	114.54 (14)
O2—K—N1	60.19 (3)	N1—C7—H7A	109.3 (7)
O2 ⁱ —K—N1	120.56 (3)	С8—С7—Н7А	108.1 (7)
O1—K—N1	59.24 (3)	N1—C7—H7B	110.0 (7)
O1 ⁱ —K—N1	120.48 (3)	С8—С7—Н7В	108.8 (7)
N1 ⁱ —K—N1	179.25 (5)	Н7А—С7—Н7В	105.6 (11)
C4—N1—C7	110.68 (12)	O3—C8—C7	109.67 (13)
C4—N1—C1	109.04 (12)	O3—C8—H8A	110.5 (8)
C7—N1—C1	109.81 (12)	С7—С8—Н8А	109.4 (8)
C4—N1—K	109.68 (9)	O3—C8—H8B	108.3 (8)
C7—N1—K	106.11 (9)	С7—С8—Н8В	113.0 (7)
C1—N1—K	111.50 (8)	H8A—C8—H8B	106.0 (11)
C2—O1—C3	112.19 (11)	O3—C9—C3 ⁱ	108.95 (13)
С2—О1—К	114.27 (8)	О3—С9—Н9А	109.1 (7)
С3—О1—К	114.94 (9)	С3 ^і —С9—Н9А	109.7 (7)
C6—O2—C5	110.94 (11)	O3—C9—H9B	108.5 (8)
С6—О2—К	113.21 (8)	C3 ⁱ —C9—H9B	111.9 (8)
С5—О2—К	115.81 (9)	Н9А—С9—Н9В	108.6 (11)
С8—О3—С9	111.28 (11)	C11—C10—C10 ⁱⁱ	123.05 (17)
С8—О3—К	116.55 (9)	C11—C10—C14	112.88 (14)
С9—О3—К	114.21 (9)	C10 ⁱⁱ —C10—C14	124.07 (16)
N1—C1—C2	113.50 (13)	C12—C11—C10	121.13 (16)
N1—C1—H1A	106.9 (7)	С12—С11—Н11	118.5 (8)
C2	108.0 (7)	C10-C11-H11	120.3 (8)
N1—C1—H1B	110.9 (7)	N2-C12-C11	126.20 (16)

C2_C1_H1B	108 1 (7)	N2_C12_H12	1164(9)
	100.1 (7)		110.4 (5)
H1A—C1—H1B	109.3 (11)	C11—C12—H12	117.3 (9)
O1—C2—C1	108.45 (13)	C12—N2—C13	112.78 (15)
O1—C2—H2A	108.0 (8)	N2—C13—C14	126.02 (17)
C1—C2—H2A	109.9 (8)	N2—C13—H13	116.1 (8)
O1—C2—H2B	111.6 (8)	C14—C13—H13	117.9 (8)
C1—C2—H2B	110.2 (8)	C13—C14—C10	120.96 (16)
H2A—C2—H2B	108.6 (12)	C13—C14—H14	119.1 (8)
01—C3—C9 ⁱ	108.66 (13)	C10—C14—H14	119.9 (8)
O1—C3—H3A	109.0 (7)		

Symmetry codes: (i) -x+3/2, y, -z+1/2; (ii) -x, -y+1, -z.

Literature:

- [1] M. S. Denning, M. Irwin, J. M. Goicoechea, *Inorg. Chem.* 2008, 47, 6118-6120.
- [2] C. R. Smith, J. Am. Chem. Soc. 1924, 46, 414-419.