Supporting Information

Imine-coordinated 2-Aminoazole Complexes of Au(I): Complicating Reactions and Verification of Products by Crystal Structure Determination

Leigh-Anne de Jongh^a , Liliana Dobrzańska^{a,b}, Christoph E. Strasser^a, Helgard G. Raubenheimer^a, and Stephanie Cronje^{a,c*}

^a Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1,
Matieland, 7602, Stellenbosch, South Africa
^b Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F - bus 2404,
B-3001 Heverlee, Belgium

^c Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60348 Frankfurt am Main, Germany 2-Amino-4-methylthiazole:

¹H NMR ((CD₃)₂CO): $\delta = 6.70$ (bs, 2H, NH₂), 6.06 (s, 1H, SCH), 2.10 (s, 3H, CH₃). – ¹³C NMR ((CD₃)₂CO): $\delta = 170.5$ (s, NCS), 149.9 (s, CH₃C), 102.6 (s, SC), 18.3 (s, CH₃). – ¹⁵N NMR ((CD₃)₂CO): $\delta = -122.5$ (N=C), -313.7 (NH₂).

¹H NMR (CD₂Cl₂): $\delta = 6.04$ (q, 1H, ⁴J = 1.74 Hz, SCH), 5.94 (bs, 2H, NH₂), 2.17 (d, 3H, ⁴J = 1.74 Hz, CH₃). – ¹³C NMR (CD₂Cl₂): $\delta = 168.6$ (s, NCS), 148.6 (s, CH₃C), 102.0 (s, SC), 17.1 (s, CH₃).

2-Aminobenzothiazole:

¹H NMR ((CD₃)₂CO): δ = 7.63 (d, 1H, ³*J* = 7.3 Hz, NCCH), 7.41 (d, 1H, ³*J* = 7.3 Hz, SCCH), 7.24 (dd, 1H, ³*J* = 7.3 Hz, NCCH*CH*), 7.05 (dd, 1H, ³*J* = 7.3 Hz, SCCH*CH*), 7.00 (bs, 2H, NH₂). – ¹³C NMR ((CD₃)₂CO): δ = 168.4 (s, NCS), 154.9 (s, NCCHCH), 133.5 (s, SCCHCH), 127.3 (s, SCCHCH), 123.1 (s, NCCHCH), 122.5 (s, SCCHCH), 120.2 (s, NCCHCH). – ¹⁵N NMR ((CD₃)₂CO): δ = –140.3 (N=C), –309.6 (NH₂).

2-Aminobenzimidazole:

¹H NMR ((CD₃)₂CO): δ = 7.18 (m, 2H, NCC*H*CH), 6.90 (m, 2H, NCCHC*H*), 6.21 (bs, 2H, NH₂). – ¹³C NMR ((CD₃)₂CO): δ = 157.4 (s, NCN), 140.7 (s, NCCHCH), 121.4 (s, NCCHCH), 113.7 (s, NCCHCH). – ¹⁵N NMR (CD₃OH): δ = –200.3 (N=C or NH), –331.8 (NH₂).

2-Aminothiazoline:

¹H NMR ((CD₃)₂CO): δ = 4.71 (bs, 2H, NH₂), 3.84 (dd, 2H, ³*J* = 7.5 Hz, NCH₂), 3.27 (dd, 2H, ³*J* = 7.5 Hz, SCH₂). – ¹³C NMR ((CD₃)₂CO): δ = 162.5 (s, NCS), 62.1 (s, NCH₂), 37.1 (s, SCH₂). – ¹⁵N NMR ((CD₃)₂CO): δ = –164.0 (N=C), –305.9 (NH₂).

Crystal structure determinations

Crystallographic data for **3b**: C₅₃H₅₆Au₂N₈O₉P₂, $M_r = 1404.94$, colorless needle, 0.20 × 0.06 × 0.06 mm³, monoclinic, space group $P2_1/c$ (no. 14), a = 9.7420(9), b = 13.6773(12), c = 21.0830(19) Å, $\beta = 93.197(2)^{\circ}$, V = 2804.8(4) Å³, Z = 2, $D_c = 1.66$ g/cm³, $F_{000} = 1380$ e, Bruker APEX CCD area-detector, Mo K_{α} radiation, $\lambda = 0.71073$ Å, T = 100(2) K, $2\theta_{max} = 52.8^{\circ}$, 16145 reflections collected, 5720 unique (R_{int} = 0.0451). Final *GooF* = 1.052, R1 = 0.0415, wR2 = 0.0886, R indices based on 4376 reflections with $I > 2 \sigma(I)$ (refinement on F^2), 385 parameters, 25 restraints. Lp and absorption corrections applied, $\mu = 5.3$ mm⁻¹.

The nitrate anion was found to be disordered over two positions with refined site occupancies of 0.63(1):0.37(1). Some of the anisotropic displacement parameters were restrained in this counter ion.

Crystallographic data for $3c \times \text{solvent: } C_{25}H_{22}AuN_4O_3P$, $M_r = 654.40$, colorless needle, $0.17 \times 0.06 \times 0.06 \text{ mm}^3$, monoclinic, space group $P2_1/c$ (no. 14), a = 8.955(5), b = 23.045(12), c = 14.660(8) Å, $\beta = 118.107(9)^\circ$, V = 2668(2) Å³, Z = 4, $D_c = 1.63 \text{ g/cm}^3$, $F_{000} = 1272$ e, Bruker APEX CCD area-detector, MoK_a radiation, $\lambda = 0.71073$ Å, T = 100(2) K, $2\theta_{\text{max}} = 56.8^\circ$, 16491 reflections collected, 6252 unique ($R_{\text{int}} = 0.0339$). Final *GooF* = 0.983, R1 = 0.0297, wR2 = 0.0671, R indices based on 5247 reflections with $I > 2 \sigma(I)$ (refinement on F^2), 314 parameters, 2 restraints. Lp and absorption corrections applied, $\mu = 5.6 \text{ mm}^{-1}$.

In structure **3c**, the solvent molecules could not be assigned because of diffuse electron density. Therefore, the electron density was subtracted and the SQUEEZE instruction of PLATON was applied. Consequently, the relative molecular mass M, F(000), and absorption coefficient are not correct since, solvent molecules were not taken into account in these calculations.