Supporting Information

Bidirectional Photoinduced Energy Transfer in Nanoassemblies of Quantum Dots and Luminescent Metal Complexes

Srinidhi Ramachandra^a, Cristian Alejandro Strassert^b, David N Reinhoudt^a, Daniel Vanmaekelbergh^c, and Luisa De Cola^{a, b, d}

- ^a Laboratory of Supramolecular Chemistry and Technology, and MESA+ Institute of Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
- ^b Physikalisches Institut and Center for Nanotechnology (CeNTech) Westfälische
 Wilhelms-Universität Münster, Heisenbergstraße11, D-48149 Münster, Germany
- ^c Condensed Matter and Interfaces, Debye Institute, University of Utrecht, P. O. Box 80.000, 3508 TA Utrecht, The Netherlands
- ^d Current address: Université de Strasbourg Institut de Science et d'Ingénierie
 Supramoléculaires (ISIS), 8 Alleé Gaspard Monge, 67083 Strasbourg, France
 S. Ramachandra and C. A. Strassert have equally contributed to the paper.

Fig S1. Spectral overlap between 3 (donor-o-) emission and CdTe (acceptor ---) absorption.

Calculation of CdTe-sensitized emission and quenching of 3 within the CdTe-3 assembly

Fig. S2. Experimental emission spectra of CdTe (A), **3** (B), and CdTe-**3** (C). Calculated components (CdTe, D / 3, E) of the CdTe-**3** experimental emission spectrum (C), where $D = A \times 1.055$, and $E = B \times 0.45$. Calculated emission spectrum of CdTe-**3** (F) obtained as $F = A \times 1.055 + B \times 0.45$. All experimental emission spectra were measured under the same settings and conditions, exciting at 385 nm. The calculated emission components D and E where used for the energy transfer analysis, as described in the main manuscript.

Fig. S3. Experimental emission spectra of CdTe (A), **3'** (B), and CdTe/**3'**) (C). Calculated components (CdTe, D / 3', E) of the CdTe/**3'** experimental emission spectrum (C), where $D = A \times 0.79$, and $E = B \times 0.65$. Calculated emission spectrum of CdTe/**3'** (F) obtained as $F = A \times 0.79 + B \times 0.65$. All experimental emission spectra were measured under the same settings and conditions, exciting at 385 nm. The calculated emission components D and E where used for the energy transfer analysis, as described in the main manuscript.

Spectral overlap between CdSe/ZnS and 6

Fig S4. Spectral overlap between CdSe/ZnS (donor) emission and 6 (acceptor) absorption.

Fig S5. Emission spectra of CdSe/ZnS (---), 6' (-*-) and CdSe/ZnS/ 6' mixture (- \circ -) in 1:1 (*v*/*v*) toluene-methanol, $\lambda_{em} = 431$ nm.

Estimation of the donor-acceptor separation

The energy transfer efficiency can be expressed in terms of Förster radius, R_0 , and the donor acceptor separation, r, as

$$E = \frac{R_0^6}{R_0^6 + r^6}$$

The dependence of *E* on r/R_0 can be plotted as a sigmoidal curve shown in Fig. S6.

Fig. S6. Dependence of energy transfer efficiency, E, on distance. R_0 denotes the Förster radius.