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Spectral overlap between CdTe and 3 

 
 
Fig S1. Spectral overlap between 3 (donor-○-) emission and CdTe (acceptor -■-) absorption. 
 
 
Calculation of CdTe-sensitized emission and quenching of 3 within the CdTe-3 assembly  
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Fig. S2. Experimental emission spectra of CdTe (A), 3 (B), and CdTe-3 (C). Calculated 
components (CdTe, D / 3, E) of the CdTe-3 experimental emission spectrum (C), where D = 
A × 1.055, and E = B × 0.45. Calculated emission spectrum of CdTe-3 (F) obtained as F = A × 
1.055 + B × 0.45. All experimental emission spectra were measured under the same settings 
and conditions, exciting at 385 nm. The calculated emission components D and E where used 
for the energy transfer analysis, as described in the main manuscript. 
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Control experiment with CdTe and 3’ 
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Fig. S3. Experimental emission spectra of CdTe (A), 3’ (B), and CdTe/3’) (C). Calculated 
components (CdTe, D / 3’, E) of the CdTe/3’ experimental emission spectrum (C), where D = 
A × 0.79, and E = B × 0.65. Calculated emission spectrum of CdTe/3’ (F) obtained as F = A × 
0.79 + B × 0.65. All experimental emission spectra were measured under the same settings 
and conditions, exciting at 385 nm. The calculated emission components D and E where used 
for the energy transfer analysis, as described in the main manuscript. 
 
 
Spectral overlap between CdSe/ZnS and 6 

 
 
Fig S4. Spectral overlap between CdSe/ZnS (donor) emission and 6 (acceptor) absorption. 
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Fig S5. Emission spectra of CdSe/ZnS (-▪-), 6’ (-*-) and CdSe/ZnS/ 6’ mixture (-◦-) in 1:1 
(v/v) toluene-methanol, λem = 431 nm. 
 
 
Estimation of the donor-acceptor separation 
 
The energy transfer efficiency can be expressed in terms of Förster radius, R0, and the donor 
acceptor separation, r, as  
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The dependence of E on r/R0 can be plotted as a sigmoidal curve shown in Fig. S6. 
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Fig. S6. Dependence of energy transfer efficiency, E, on distance. R0 denotes the Förster 
radius. 


