Rare Earth Site Preference in the Doped Laser Host Material Sc₂SiO₅. A Single-Crystal X-Ray Study

Ute Ch. Rodewald^a, Lihe Zheng^b, Birgit Heying^a, Xiaodong Xu^b, Liangbi Su^b, Jun Xu^b, and Rainer Pöttgen^a

^a Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30,

48149 Münster, Germany
^b Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. 2012. 67b. 113 – 117: received January 17, 2012

Single crystals of the laser host material Sc₂SiO₅ as well as thulium- (4 at.-%) and ytterbium- (5 at.-%) doped samples were prepared by the Czochralski technique. The structures of Sc₂SiO₅, Tm³⁺:Sc₂SiO₅, and Yb³⁺:Sc₂SiO₅ were refined on the basis of high-quality single-crystal X-ray diffraction data: monoclinic Y₂SiO₅ type, space group *C*2/*c*. The X-ray data unambiguously show that the larger rare earth cations exclusively occupy the 8 *f* site with oxygen coordination number 7.

Key words: Crystal Structure, Scandium Silicate, Rare Earth Doping, Laser Material