The gold-rich indide $\text{Eu}_5\text{Au}_{17.7}\text{In}_{4.3}$ and its Relation with the Structures of $\text{SrAu}_{4.76}\text{In}_{1.24}$ and BaLi_4

Ihor Mutsa,b, Ute Ch. Rodewalda, Vasyl’ I. Zarembab, Orest Pavlosyukb, and Rainer Pöttgena

a Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, 48149 Münster, Germany
b Inorganic Chemistry Department, Ivan Franko National University of Lviv, Kyryla and Mephodiya Street 6, 79005 Lviv, Ukraine

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

$\textbf{Z. Naturforsch.} \textbf{2012}, \textbf{67b}, 107–112; \text{received February 13, 2012}$

The gold-rich indide $\text{Eu}_5\text{Au}_{17.7}\text{In}_{4.3}$ was synthesized from the elements in a sealed tantalum ampoule that was heated in a high-frequency furnace. $\text{Eu}_5\text{Au}_{17.7}\text{In}_{4.3}$ crystallizes with a new monoclinic structure type: $C2/m$, $a = 902.7(2)$, $b = 722.8(3)$, $c = 1734.1(4)$ pm, $\beta = 94.31(3)^\circ$, $wR^2 = 0.0907$, 2640 F^2 values and 74 variables. $\text{Eu}_5\text{Au}_{17.7}\text{In}_{4.3}$ has a pronounced gold substructure with Au–Au distances ranging from 278 to 300 pm. The striking structural motifs in the gold substructure are networks of Au_6 hexagons and discrete units of corner- and edge-sharing Au_4 tetrahedra. $\text{Eu}_5\text{Au}_{17.7}\text{In}_{4.3}$ exhibits a small homogeneity range with In/Au mixing on two Wyckoff sites. Geometrically, the $\text{Eu}_5\text{Au}_{17.7}\text{In}_{4.3}$ structure can be explained as an intergrowth variant of slightly distorted $\text{SrAu}_{4.76}\text{In}_{1.24}$ and BaLi_4-related slabs. The europium coordination in the BaLi_4 slabs is similar to binary EuAu_2.

Key words: Intermetallics, Europium, Indide, Gold Clusters