The Gold-rich Indide $Eu_5Au_{17.7}In_{4.3}$ and its Relation with the Structures of $SrAu_{4.76}In_{1.24}$ and $BaLi_4$

Ihor Muts^{a,b}, Ute Ch. Rodewald^a, Vasyl' I. Zaremba^b, Orest Pavlosyuk^b, and Rainer Pöttgen^a

^a Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, 48149 Münster, Germany

b Inorganic Chemistry Department, Ivan Franko National University of Lviv, Kyryla and Mephodiya Street 6, 79005 Lviv, Ukraine

 $Reprint\ requests\ to\ R.\ P\"{o}ttgen.\ E-mail:\ pottgen@uni-muenster.de$

Z. Naturforsch. **2012**, 67b, 107 – 112; received February 13, 2012

The gold-rich indide Eu₅Au_{17.7}In_{4.3} was synthesized from the elements in a sealed tantalum ampoule that was heated in a high-frequency furnace. Eu₅Au_{17.7}In_{4.3} crystallizes with a new monoclinic structure type: C2/m, a = 902.7(2), b = 722.8(3), c = 1734.1(4) pm, $\beta = 94.31(3)^{\circ}$, wR2 = 0.0907, 2640 F^2 values and 74 variables. Eu₅Au_{17.7}In_{4.3} has a pronounced gold substructure with Au–Au distances ranging from 278 to 300 pm. The striking structural motifs in the gold substructure are networks of Au₆ hexagons and discrete units of corner- and edge-sharing Au₄ tetrahedra. Eu₅Au_{17.70}In_{4.30} exhibits a small homogeneity range with In/Au mixing on two Wyckoff sites. Geometrically, the Eu₅Au_{17.7}In_{4.3} structure can be explained as an intergrowth variant of slightly distorted SrAu_{4.76}In_{1.24}- and BaLi₄-related slabs. The europium coordination in the BaLi₄ slabs is similar to binary EuAu₂.

Key words: Intermetallics, Europium, Indide, Gold Clusters