A New 2D Copper(II) Coordination Polymer with a Schiff Base Ligand with Weakly Coordinating Sulfonate Groups Affecting the Structure

Jia-Ming Lia,b, Kun-Huan Hea,b, and Yi-Min Jianga

a Key Laboratory of Medicinal Chemical Resources and Molecular Engineering, College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, P. R. China
b College of Chemistry and Chemical Engineering, Qinzhou University, Qinzhou 535000, P. R. China

Reprint requests to Professor Yimin Jiang. E-mail: ljmmarise@163.com

\textit{Z. Naturforsch. 2012, 67b, 11–16; received November 11, 2011}

A new 2D copper(II) coordination polymer with the doubly deprotonated Schiff base ligand 2-(2-hydroxybenzylideneamino)ethanesulfonic acid (H\textsubscript{2}Saes) has been synthesized, \[\{[\text{Cu(Saes)}(4,4^\prime\text{-bpy})]\textsubscript{2} \cdot H\textsubscript{2}O\}_n \] (1), and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental and thermogravimetric analysis. Dinuclear copper complexes serve as secondary building blocks (SBUs) to construct an unusual coordination network with an interpenetrating CdSO\textsubscript{4} topology. In the crystal, the components form a stable 3D supramolecular architecture by O–H⋯O, C–H⋯O interactions and π stacking.

\textit{Key words:} Schiff Base, Crystal Structure, Copper(II) Complex, Synthesis, Thermal Stability