The Influence of d^{10} - d^{10} Interactions in $Ag_5Te_{1.8}Se_{0.2}Cl$ and $Ag_5Te_{1.6}Se_{0.4}Cl$ on Structural and Thermoelectric Properties

Nadine Eckstein^a, Jean-Louis Bobet^b, Bernard Chevalier^b, and Tom Nilges^a

- ^a Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
- b CNRS, Université de Bordeaux, ICMCB, Avenue du Docteur A. Schweitzer 87, 33608 PESSAC cedex. France

Reprint requests to Prof. Dr. Tom Nilges. Fax: +49(0)89-289-13762. E-mail: tom.nilges@lrz.tum.de

Z. Naturforsch. 2011, 66b, 1005 – 1014; received August 1, 2011

Measurements of the thermopower and of the thermal diffusivity and a detailed analysis of the structural features by temperature-dependent single-crystal structure determinations of silver ion-conducting $Ag_5Te_{1.8}Se_{0.2}Cl$ and $Ag_5Te_{1.6}Se_{0.4}Cl$ were performed to investigate the interaction of silver ions in their disordered state. The substituted phases show an order/disorder phase transition at 273.3(2) and 302.5(2) K, respectively, accompanied by a drop of the thermal diffusivity and a minimum plateau of the thermopower right after the transition. Silver ions are arranged in well-defined strands along the crystallographic c axis characterized by a set of not fully occupied sites. $Ag_5Te_{1.6}Se_{0.4}Cl$ shows a negative thermal expansion during temperature rise right after the silver order/disorder phase transition; this is explicable by attractive d^{10} - d^{10} interactions within the disordered silver substructure. After the minimum values of the thermopower have been reached, these values rise in parallel to the decrease of the d^{10} - d^{10} interactions. $Ag_5Te_{1.6}Se_{0.4}Cl$ shows a very low value of the thermal diffusivity of 0.070 mm² s⁻¹ at 300.7 K.

Key words: Silver, Tellurium, Polytelluride, Thermoelectrics, d^{10} - d^{10} Interactions