Four-component Synthesis of 1,3,4-Oxadiazole Derivatives from (N-Isocyanimino)triphenylphosphorane, (E)-Cinnamic Acids, Acetaldehyde and Secondary Amines

Ali Ramazania, Yavar Ahmadib, and Fatemeh Zeinali Nasrabadic

a Chemistry Department, Islamic Azad University, Zanjan Branch, P. O. Box 49195-467, Zanjan, Iran
b Islamic Azad University, Zanjan Branch, Young Researchers Club, Zanjan, Iran
c Chemistry Department, Zanjan University, P. O. Box 45195-313, Zanjan, Iran

Reprint requests to Dr. A. Ramazani. E-mail: aliramazani@gmail.com

\textit{Z. Naturforsch.} 2011, 66\textit{b}, 184 – 190; received October 13, 2010

The 1 : 1 iminium intermediate, generated by the addition of a secondary amine to acetaldehyde is trapped by the (N-isocyanimino)triphenylphosphorane in the presence of an (E)-cinnamic acid derivative, leading to the formation of the corresponding iminophosphorane intermediate. Disubstituted 1,3,4-oxadiazole derivatives are formed via intramolecular aza-Wittig reaction of the iminophosphorane intermediates. The reactions were completed under neutral conditions at room temperature, and the corresponding disubstituted 1,3,4-oxadiazole derivatives were produced in excellent yields.

\textbf{Key words:} (N-Isocyanimino)triphenylphosphorane, (E)-Cinnamic Acid, Acetaldehyde, 1,3,4-Oxadiazole, aza-Wittig Reaction, Secondary Amine