Single-crystal Structure and Solid-state NMR of Ga$_{2-x}$Sc$_x$O$_3$ ($x = 0.83$)

Hamdi Ben Yahiaa, Leo van Wülleb, Sarkarainadar Balamurugana, Ute Ch. Rodewalda, Hellmut Eckertb, and Rainer Pöttgena

a Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, 48149 Münster, Germany
b Institut für Physikalische Chemie, Universität Münster, Corrensstraße 30, 48149 Münster, Germany

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. 2011, 66b, 14–20; received October 29, 2010

Colorless needles of Ga$_{2-x}$Sc$_x$O$_3$ ($x = 0.83$) were isolated during the crystal growth of La$_3$Ga$_3$Sc$_2$O$_{12}$ in a K$_2$WO$_4$ flux. The structure was refined from X-ray single-crystal data: β-Ga$_2$O$_3$ type, $C2/m$, $Z = 4$, $a = 12.716(4)$ Å, $b = 3.1566(6)$ Å, $c = 5.928(5)$ Å, $\beta = 102.57(3)^\circ$, $V = 232.2$ Å3, $wR^2 = 0.0618$, 429 F^2 values, 32 variables. The structure is based on infinite double chains of edge-sharing Sc/GaO$_6$ octahedra running along the b axis. The GaO$_4$ tetrahedra connect these chains by sharing corners and form a three-dimensional framework. The oxygen atoms form a distorted ccp pattern. The 45Sc NMR spectra confirm the presence of a single scandium site, while 71Ga NMR data clearly prove the partial occupancy of the scandium site by gallium atoms. The nuclear electric quadrupolar parameters of 45Sc and 71Ga are discussed in relation to the crystallographic atomic environments.

Key words: Scandium, Crystal Chemistry, Solid-state NMR