Synthesis and Crystal Structure of the Praseodymium Orthoborate \(\lambda \)-PrBO\(_3\)

Almut Haberer\(^a\), Reinhard Kaindl\(^b\), and Hubert Huppertz\(^a\)

\(^a\) Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 52a, 6020 Innsbruck, Austria

\(^b\) Institut für Mineralogie und Petrographie, Leopold-Franzens-Universität Innsbruck, Innrain 52, 6020 Innsbruck, Austria

Reprint requests to H. Huppertz. E-mail: Hubert.Huppertz@uibk.ac.at

Z. Naturforsch. 2010, 65b, 1206 – 1212; received May 18, 2010

The praseodymium orthoborate \(\lambda \)-PrBO\(_3\) was synthesized from Pr\(_6\)O\(_{11}\), B\(_2\)O\(_3\), and PrF\(_3\) under high-pressure / high-temperature conditions of 3 GPa and 800 °C in a Walker-type multianvil apparatus. The crystal structure was determined on the basis of single-crystal X-ray diffraction data, collected at room temperature. The title compound crystallizes in the orthorhombic aragonite-type structure, space group \(Pnma \), with the lattice parameters \(a = 577.1(2) \), \(b = 506.7(2) \), \(c = 813.3(2) \) pm, and \(V = 0.2378(2) \) nm\(^3\), with \(R_1 = 0.0400 \) and \(wR_2 = 0.0495 \) (all data). Within the trigonal-planar BO\(_3\) groups, the average B–O distance is 137.2 pm. The praseodymium atoms are ninefold coordinated by oxygen atoms.

Key words: High Pressure, Crystal Structure, Multianvil, Orthoborate, Aragonite