A Seven-coordinate Manganese(II) Complex Formed with the Tripodal Tetradentate Ligand Tris(N-methylbenzimidazol-2-ylmethyl)amine

Huilu Wu, Jingkun Yuan, Baoliang Qi, Jin Kong, Fan Kou, Fei Jia, Xuyang Fan, and Yaoyu Wang

a School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P.R. China
b Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi’an, Shanxi 710069, P.R. China

Reprint requests to Dr. Huilu Wu. E-mail: wuhuilu@163.com

Z. Naturforsch. 2010, 65b, 1097 – 1100; received May 6, 2010

A seven-coordinate manganese(II) complex with the tripodal tetradentate ligand tris(N-methylbenzimidazol-2-ylmethyl)amine (Mentb), with composition [Mn(Mentb)(α-methacrylate)(DMF)]·(ClO₄)·(DMF), was synthesized and characterized by elemental analysis, electrical conductivity, and IR and UV/Vis spectral measurements. The crystal structure of the complex has been determined by single-crystal X-ray diffraction. The Mn²⁺ cation is bonded to a Mentb ligand, an α-methacrylate ligand and a DMF molecule through four N atoms and three O atoms, resulting in a seven-coordinate geometry. Cyclovoltammograms of the complex indicate a quasireversible Mn³⁺/Mn²⁺ couple. The X-band EPR spectrum of the complex exhibits a six-line manganese hyperfine pattern with $g = 2$, $A = 91$, and confirms that the material is high-spin Mn(II).

Key words: Manganese(II) Complex, Crystal Structure, Cylovoltammetry, EPR, Tris(N-methylbenzimidazol-2-ylmethyl)amine