Gold Nanoparticles Bearing an α-Lipoic Acid-based Ligand Shell: Synthesis, Model Complexes and Studies Concerning Phosphorescent Platinum(II)-Functionalisation

Ulrich Siemelinga, Frauke Bretthauera, Clemens Bruhna, Tim-Patrick Fellingerb, Wah-Leung Tongc, and Michael C. W. Chanc

a Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
b Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476 Potsdam, Germany
c Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China

Reprint requests to Prof. Dr. Ulrich Siemeling. Fax: +49 561 804 4777.
E-mail: siemeling@uni-kassel.de

Z. Naturforsch. 2010, 65b, 1089 – 1096; received March 31, 2010

The surface functionalisation of gold nanoparticles (GNPs) with luminescent platinum complexes has been investigated, utilising α-lipoic acid derivatives for GNP stabilisation. Model complexes have been studied to mimic the chemisorption chemistry required to afford GNPs protected by an α-lipoic acid-based ligand shell with terminal functionalisation suitable for metal coordination, and the unambiguous binding of the cyclic disulfide moiety at a zero-valent precious metal core through oxidative addition has been confirmed by X-ray crystallography. Subsequently, gold nanoparticles bearing the α-lipoic acid-based ligand shell have been prepared and characterised, and a synthetic methodology for the immobilisation of PtII luminophores onto their surface has been established.

Key words: Gold, Luminescence, Nanoparticles, Platinum, Self-assembly