Dissolving Silicides: Syntheses and Crystal Structures of New Ammoniates Containing Si$_5^{2-}$ and Si$_9^{4-}$ Polyanions and the Role of Ammonia of Crystallisation

Stefanie Joseph, Christof Suchentrunk, and Nikolaus Korber

Institut für Anorganische Chemie der Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany

Reprint requests to Prof. Dr. Nikolaus Korber. Fax: +49-941-943 1812. E-mail: nikolaus.korber@chemie.uni-regensburg.de

The dissolution of the ternary material K$_6$Rb$_6$Si$_{17}$ in liquid ammonia yields the solvate compound Rb$_4$Si$_9\cdot$5NH$_3$, which contains fourfold negatively charged nine atom silicon clusters Si$_9^{4-}$. Using additionally the [2.2.2] cryptand during the dissolution results in the solvate [K(2.2.2-crypt)]$_2$Si$_5\cdot$4NH$_3$, in which the Si$_5^{2-}$ anion is present in the crystal structure. The Si$_5^{2-}$ anion has the shape of a nearly ideal trigonal bipyramid. The starting material K$_6$Rb$_6$Si$_{17}$ contains both Si$_4^{4-}$ and Si$_9^{4-}$ Zintl anions. In ammoniate crystal structures, Si$_9^{4-}$ anions are accessible independently of Si$_4^{4-}$ anions, and ammonia of crystallisation plays a major role in the observed crystal symmetry. For the cryptate structures of Si$_5^{2-}$ and Ge$_5^{2-}$ anions ammonia of crystallisation is obligatory despite the loss of crystal symmetry compared to the crystal structures of the heavier homologues Pb$_5^{2-}$ and Sn$_5^{2-}$.

Key words: Silicides, Zintl Anions, Liquid Ammonia, Crystal Structure Determination