Hybridisation of Sebacic Acid on the Surface of γ-Alumina Nanoparticles in Sub- and Supercritical Water

Varu Singha,b,c, Seiichi Takamia,b, Kimitaka Minamic, Daisuke Hojoc, Toshihiko Aritaa,b, and Tadafumi Adschiria,b,c

a Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
b Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
c World Premier International Research Center – Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

Reprint requests to Prof. T. Adschiri. E-mail: ajiri@tagen.tohoku.ac.jp

\textit{Z. Naturforsch.} 2010, 65b, 1045 – 1050; received February 26, 2010

The surface modification of γ-alumina nanoparticles by sebacic acid in super- and subcritical water was investigated. The modified alumina was characterised by Fourier-transform infrared spectra, X-ray diffraction patterns, transmission electron microscopy images, and thermogravimetric studies. The alumina nanoparticles were found to remain stable, and sebacic acid was bound to their surfaces at 200 °C, but their crystallite structure was partially changed to that of boehmite above 200 °C. Under supercritical conditions at 400 °C, the alumina nanoparticles were totally changed to boehmite nanoparticles. The surface adsorption of sebacic acid is attributed to reactions between the surface -OH groups of alumina and the -COOH groups of sebacic acid. The modified alumina nanoparticles have -COOH groups on their surface, enabling hybridisation with various biomolecules, and thus allowing their application in several areas.

Key words: Surface Modification, Nano Alumina, Supercritical and Subcritical Water