The New Niobium Cluster Azides (NH$_4$)$_4$[Nb$_6$Cl$_{12}$(N$_3$)$_6$](H$_2$O)$_2$ and Na$_{1.15(3)}$La$_{0.85(3)}$[Nb$_6$Cl$_{12}$(N$_3$)$_6$](H$_2$O)$_{13(1)}$.

Syntheses and Crystal Structure Determination

Olaf Reckeweg and Arndt Simon

Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany

Reprint requests to Dr. Olaf Reckeweg. Fax: +49(0)711 689 1091. E-mail: olaf.reykjavik@gmx.de

Z. Naturforsch. 2010, 65b, 543–548; received January 29, 2010

In memoriam Joachim Strähle

The cluster compounds (NH$_4$)$_4$[Nb$_6$Cl$_{12}$(N$_3$)$_6$](H$_2$O)$_2$ (1) and Na$_{1.15(3)}$La$_{0.85(3)}$[Nb$_6$Cl$_{12}$(N$_3$)$_6$]·(H$_2$O)$_{13(1)}$ (2) have been synthesized by the reaction of an aqueous solution of Nb$_6$Cl$_{14}$ with an excess of NaN$_3$ and the respective chloride salts. 1 crystallizes isotypically to the other alkali metal cluster azides in the space group $P\bar{1}$ (no. 2) with the lattice parameters $a = 908.97(8)$, $b = 932.78(8)$, $c = 1045.78(9)$ pm; and $\alpha = 95.94(1)$, $\beta = 101.68(1)$ and $\gamma = 102.41(1)^\circ$, while 2 is found to be nearly isostructural to the alkaline earth metal cluster azides crystallizing in the space group $Fd\bar{3}m$ (no. 227) with the lattice parameter $a = 1996.9(1)$ pm. The stoichiometry of 2 was confirmed by EDX analyses which also led to a reconsideration of the water content of alkaline earth metal cluster azide compounds. The title compounds and results obtained from the reevaluation of the alkaline earth metal cluster azide compounds are compared.

Key words: Azide, Cluster, Niobium, Alkaline Earth Metal, Rare Earth Metal